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Introduction
With the advent of antiretroviral therapy (ART), the overall 
mortality and morbidity in HIV/AIDS patients has decreased 
substantially. However, the toxicity of ART is one of the major 
concerns of the HIV/AIDS community. A considerable number 
of patients have poor adherence to ART, in part due to drug tox-
icity (1), consequently leading to the emergence of drug resis-
tance and/or virologic failure. Ritonavir (RTV) is the backbone 
of boosted protease inhibitor–based regimens in ART. In early 
clinical studies, treatment with a full dose of RTV frequently 
caused liver damage (2, 3). The use of low-dose RTV as a phar-
macoenhancer for RTV-containing regimens decreased the 
overall rate of liver injury. However, RTV is still considered the 
cause of liver damage during treatment with RTV-containing 
regimens (4, 5). Because the mechanisms of RTV hepatotoxicity 
remain elusive, no approach is currently available to predict and 
prevent such toxicity.

Remarkably, multiple clinical studies found that hepatotox-
icity occurred in 100% of participants who were pretreated with 
rifampicin (RIF) (an antibiotic for treating tuberculosis) or efa-
virenz (EFV) (a nonnucleoside reverse transcriptase inhibitor for 
treating HIV) followed by RTV-containing regimens (6–9). We 
noted that both RIF and EFV are activators of the human preg-
nane X receptor (PXR), a ligand-dependent transcription factor 
that is highly expressed in the liver and upregulates drug metabo-
lizing enzymes, including CYP3A4 (10–14). In addition, CYP3A4 
plays a critical role in RTV metabolism and bioactivation (15–20). 
These data led us to hypothesize that human PXR modulates RTV 

hepatotoxicity through CYP3A4-dependent pathways. Genetical-
ly engineered PXR- and CYP3A4-humanized mouse models were 
developed and used to test our hypothesis.

Results and Discussion
This project was initiated from the clinical observations show-
ing hepatotoxicity in subjects pretreated with RIF followed by 
RTV-containing regimens (Figure 1A) (6–8). We first used WT 
mice to mimic the hepatotoxicity that occurred in the clinical 
studies. However, no significant liver injury was found in WT mice 
pretreated with RIF for 7 days followed by RTV (Figure 1, B and 
C, and Supplemental Figure 1; supplemental material available 
online with this article; https://doi.org/10.1172/JCI128274DS1). 
These data suggest interspecies differences between mice and 
humans in response to RIF and/or RTV. RIF is a human-specific 
activator of PXR, a ligand-dependent transcription factor highly 
expressed in the liver, which regulates a gene network includ-
ing the major hepatic drug-metabolizing enzyme CYP3A4 (11, 
14). To overcome the interspecies differences in RIF-mediated 
PXR activation, we generated a double-transgenic mouse mod-
el expressing human PXR and CYP3A4 (hPXR/CYP3A4) on the 
background of both mouse Pxr and Cyp3a knockout (Figure 1D). 
As expected, treatment with RIF induced a panel of PXR target 
genes, including CYP3A4, in the livers of hPXR/CYP3A4 mice 
(Supplemental Figure 2), indicating that human PXR is function-
al in these mice.

Using hPXR/CYP3A4 mice, we recapitulated the RTV hepa-
totoxicity observed in clinical studies (6–8), as the biomarkers of 
liver damage were significantly increased in hPXR/CYP3A4 mice 
pretreated with RIF for 7 days followed by RTV (Figure 1, E and 
F). In addition, histological analysis revealed massive hepatocyte 
degeneration in hPXR/CYP3A4 mice pretreated with RIF followed 
by RTV (Supplemental Figure 3). These data indicate that human 
PXR is the key mediator of hepatotoxicity caused by lead-in treat-
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al supplements (26, 27). Hence, clinicians 
should be mindful of both PXR and CAR 
activators before starting RTV-containing 
regimens in HIV/AIDs patients, as they could 
induce CYP3A4 and predispose patients to 
the risk of liver injury.

To further verify the role of human PXR 
and CYP3A4 in RTV hepatotoxicity, the 
adverse interactions between EFV and RTV 
were investigated in hPXR/CYP3A4 and 
hPXR/Cyp3a-null mice. EFV is also a PXR acti-
vator (Supplemental Figure 5A). We found that 
lead-in treatment with EFV for 7 days poten-
tiated RTV hepatotoxicity in hPXR/CYP3A4 
mice (Supplemental Figure 5, B–F), which 
mimicked EFV- and RTV-induced liver injury 

observed in a previous clinical study (9). In addition, lead-in treat-
ment with EFV for 7 days followed by RTV, resulted in hepatocyte 
degeneration (Supplemental Figure 5E), exhibiting the same pheno-
type as RIF- and RTV-induced liver damage (Supplemental Figure 3). 
We also noted that RIF had a more significant impact than EFV on 
RTV hepatotoxicity, as revealed by alanine transaminase (ALT) and 
aspartate transaminase (AST) values (Figure 1, E and F, and Supple-
mental Figure 5, B and C), which could be the result of enterohepatic 
circulation of RIF leading to long-term exposure of liver to RIF (28). 
Furthermore, we found that the hepatotoxicity associated with lead-
in treatment with EFV followed by RTV was CYP3A4 dependent 
(Supplemental Figure 5, B–F). These data further confirmed the roles 
of human PXR and CYP3A4 in RTV hepatotoxicity.

We next investigated the pharmacokinetic interactions between 
RIF and RTV in the liver of hPXR/CYP3A4 and hPXR/Cyp3a-null 
mice. RTV had no effect on RIF metabolism and disposition (Sup-
plemental Figure 6). However, pretreatment with RIF for 7 days sig-
nificantly increased the metabolism and bioactivation pathways of 
RTV in the livers of hPXR/CYP3A4 mice, but not in hPXR/Cyp3a-
null mice (Supplemental Figure 7). The major metabolism and bio-
activation pathways of RTV were M1 followed by M13 (Supplemental 
Figure 7, A and B), and both metabolites are formed by CYP3A (20). 
Compared with the control group, the production of M1 and M13 
increased 19- and 7-fold, respectively, in liver microsomes of hPXR/
CYP3A4 mice pretreated with RIF (Supplemental Figure 7, C and D). 

ment with RIF followed by RTV. This information is extremely 
important for the HIV/AIDS community because many prescrip-
tion drugs and herbal supplements are potent PXR activators that 
individuals may encounter in daily life (21–24). Therefore, we sug-
gest reviewing whether HIV/AIDs patients are under treatment 
with PXR activators before starting RTV-containing regimens.

We next explored the pathways downstream of PXR that lead 
to RTV hepatotoxicity. We hypothesized that PXR modulates RTV 
hepatotoxicity through CYP3A4-dependent pathways because 
CYP3A4 is a primary PXR target gene (11, 13, 14) and CYP3A4 plays 
an important role in RTV metabolism and bioactivation (15–20). To 
test this hypothesis, we generated a humanized PXR mouse mod-
el deficient in Cyp3a (hPXR/Cyp3a-null) (Figure 2A). Treatment 
with RIF for 7 days significantly induced PXR target genes other 
than Cyp3a in the liver of hPXR/Cyp3a-null mice (Figure 2B and 
Supplemental Figure 4), indicating that PXR is functionally intact 
in these mice. Compared with hPXR/CYP3A4 mice, no liver injury 
was observed in hPXR/Cyp3a-null mice pretreated with RIF for 7 
days followed by RTV (Figure 2, C–F), indicating that PXR mod-
ulates RTV hepatotoxicity through CYP3A4-dependent pathways. 
These data suggest that CYP3A4 induction should be considered as 
a risk factor for RTV hepatotoxicity. Apart from PXR, other nucle-
ar receptors, such as constitutive androstane receptor (CAR), also 
upregulate CYP3A4 expression (25) and many CAR activators are 
found among prescription drugs (such as phenobarbital) and herb-

Figure 1. Role of human PXR in the hepatotox-
icity cause by pretreatment with RIF followed 
by RTV. (A) Schematic showing the adverse drug 
interactions between RIF and RTV in humans that 
led to the early termination of clinical studies. 
(B–F) Evaluation of liver damage in WT and hPXR/
CYP3A4 mice pretreated with RIF for 7 days fol-
lowed by RTV. (B and C) Activities of ALT and AST 
in the serum of WT mice. (D) Genotyping results of 
hPXR/CYP3A4 mice, which are positive for human 
PXR and CYP3A4, but negative for mouse Pxr and 
Cyp3a. (E and F) Activities of ALT and AST in the 
serum of hPXR/CYP3A4 mice. All data are shown 
as mean ± SEM (n = 3–4). Statistical significance 
was determined by 1-way ANOVA with Tukey’s 
post hoc test. ****P < 0.0001 for RIF+RTV group 
vs. control, RTV, and RIF groups.
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tase 3 (Cbr3), and solute carrier family 25 
member 24 (Slc25a24) (Figure 3, E–G). 
Similarly to the adverse drug interactions 
between RIF and RTV, lead-in treatment 
with the PXR activator EFV followed by 
RTV also caused oxidative stress in the 
livers of hPXR/CYP3A4 mice, but not in 
hPXR/Cyp3a-null mice (Supplemental 
Figure 8). These data indicate that pre-
treatment with PXR activators followed 
by RTV causes oxidative stress in the liver, 
which is dependent on CYP3A4.

Oxidative stress can lead to endo-
plasmic reticulum (ER) stress (34). 
Indeed, we found that the ER is a tar-
get organelle of RTV hepatotoxicity, as 
electron-microscopic analysis revealed 
massive ER dilation in hepatocytes of 
hPXR/CYP3A4 mice pretreated with RIF 
for 7 days followed by RTV (Figure 4A). 
In addition, lead-in treatment with RIF 

followed by RTV caused severe ER stress in the livers of hPXR/
CYP3A4 mice, as indicated by increased expression of ER stress 
biomarker mRNAs, including C/EBP homologous protein (Chop), 
binding immunoglobulin protein (Bip), and cyclic AMP-depen-
dent transcription factor 3 (Atf3) (Figure 4, B and C). ER stress also 
occurred in the livers of hPXR/CYP3A4 mice pretreated with EFV 
for 7 days followed by RTV, but not in hPXR/Cyp3a-null mice with 
the same treatment (Supplemental Figure 9). Persistent ER stress 
can lead to cell death (34). Concordantly, we observed a significant 
increase in the expression of mRNAs encoded by genes associated 
with cell death and tissue injury, including death receptor 5 (Dr5), 
BCL2-associated X (Bax), and monocyte chemoattractant protein 
1 (Mcp1) in the liver of hPXR/CYP3A4 mice pretreated with RIF for 
7 days followed by RTV, but not in hPXR/Cyp3a-null mice (Figure 
4, D–F). These data suggest that lead-in treatment with PXR acti-
vators followed by RTV causes ER stress and hepatocellular injury 
and that it is CYP3A4 dependent.

Accompanied with M1, 2-isopropylthiazole-4-carbaldehyde (M1-1) 
was produced, which can be further metabolized to form an adduct 
with glutathione (GSH) (20). In addition, M13 and 2-methylpropan-
ethioamide (M13-1) were isopropylthiazole ring-open metabolites of 
RTV. The ring-open metabolites of thiazole derivatives can be fur-
ther oxidized and result in liver injury (29, 30). These data indicate 
that PXR-mediated CYP3A4 induction increases RTV bioactivation 
in the liver, which can potentially lead to liver damage.

CYP-mediated drug bioactivation can cause cellular stress (31, 
32). Using a metabolomic approach, we found a dramatic increase in 
ophthalmic acid (OA), a biomarker of oxidative stress (33), in the liv-
ers of hPXR/CYP3A4 mice pretreated with RIF for 7 days followed 
by RTV, but not in hPXR/Cyp3a-null mice with the same treatment 
(Figure 3, A–D). In addition, pretreatment with RIF followed by RTV 
in hPXR/CYP3A4 mice caused upregulation of mRNAs encoded by 
genes that are involved in cellular responses to oxidative stress in 
the liver, including glutathione peroxidase 2 (Gpx2), carbonyl reduc-

Figure 2. Role of CYP3A4 in the hepatotoxicity 
caused by pretreatment with RIF followed by 
RTV. hPXR/CYP3A4 and hPXR/Cyp3a-null mice 
were pretreated with RIF for 7 days followed by 
RTV. (A) Genotyping results of hPXR/Cyp3a-
null mice, which are positive for human PXR, 
but negative for human CYP3A4. (B) Expres-
sion of CYP3A4 in the liver of hPXR/CYP3A4 
and hPXR/Cyp3a-null mice pretreated with or 
without PXR ligand RIF for 7 days. Gapdh was 
used as a loading control. (C and D) Activities of 
ALT and AST in the serum. All data are shown 
as mean ± SEM. (n = 3-4). Statistical signifi-
cance was determined by 2-way ANOVA with 
Tukey’s post hoc test. ****P < 0.0001. (E and 
F) Histological analysis of liver samples from 
control and RIF+RTV groups of hPXR/CYP3A4 
and hPXR/Cyp3a-null mice. H&E staining. CV, 
central vein; ψ indicates hepatocyte degenera-
tion. Original magnification: ×400.
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PXR-mediated CYP3A4 induction increases the production of 
RTV-reactive metabolites that can directly target the ER, leading 
to ER stress and hepatocellular injury (Figure 4G).

In summary, the current study demonstrated the essential 
roles of human PXR and CYP3A4 in RTV hepatotoxicity. These 
results can be used to develop novel strategies based upon PXR, 

The ER is critical for protein maturation, including post-
translational modification and proper folding (34). The activa-
tion of PXR, being a transcription factor, by ligands such as RIF 
and EFV upregulates a network of genes, including CYP3A4, and 
thus increases the workload of the ER for protein maturation and 
processing. On the other hand, CYP3A4 is located in the ER, and 

Figure 3. Metabolomics reveals oxidative stress in the liver of hPXR/CYP3A4 mice pretreated with RIF for 7 days followed by RTV. Liver samples were 
analyzed by UPLC-QTOFMS. (A) Principal component analysis (PCA) of liver samples from control, RIF, RTV, and RIF/RTV groups of hPXR/CYP3A4 mice. (B) 
Loading S plots generated by orthogonal projections to latent structures discriminant analysis (OPLS-DA) analysis of liver samples. The x axis is a measure 
of the relative abundance of ions, and the y axis is a measure of the correlation of each ion to the model. OA, a biomarker of oxidative stress, was identi-
fied as a top-ranking ion in the RIF+RTV group. (C) Structural illustration of OA by tandem mass spectrometry (MS/MS) fragmental analysis. (D) Relative 
quantification of OA in the liver of hPXR/CYP3A4 and hPXR/Cyp3a-null mice. (E–G) The expressions of genes related to oxidative stress. Gpx2 (E), Cbr3 (F), 
and Slc25a24 (G) mRNAs were analyzed by quantitative PCR (qPCR). All data are shown as mean ± SEM. (n = 3–4). Statistical significance was determined 
by 2-way ANOVA with Tukey’s post hoc test. The data in the control group of hPXR/CYP3A4 mice were set as 1. ***P < 0.001; ****P < 0.0001.
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activation of PXR upregulates CYP3A4 expression; (ii) overexpressed CYP3A4 is located in the ER; (iii) CYP3A4 catalyzes RTV to produce reactive metabo-
lites; and (iv) ER is exposed to a high level of reactive metabolites of RTV, which leads to ER stress and hepatocellular injury.
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