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Introduction
Hematopoietic stem cell transplantation (HCT) is an essential and 
often the sole curative treatment strategy for high risk hematologic 
malignancies (1). Graft-versus-host disease (GVHD), the foremost 
complication of allogeneic HCT, is a major limitation of this pro-
cedure, accounting for deleterious effects on quality of life and 
increased mortality from HCT (2, 3). Current diagnosis of acute 
GVHD (aGVHD) and chronic GVHD (cGVHD) in patents who have 
undergone a bone marrow transplant is based on inaccurate, oper-
ator-dependent clinical markers, and less often on biopsies. These 

methods are time consuming, costly, invasive, and yield late-stage 
diagnoses that negatively affect morbidity and mortality. In addi-
tion, current practice lacks accurate biomarkers for prediction of 
disease occurrence, identification of disease onset, prediction of 
disease response to treatment, and accurate assessment of the 
actual response to treatment (4). Multiple prognostic and diagnos-
tic biomarkers for cGVHD have been proposed, including IL2Rα, 
aminopeptidase N (CD13), IL4, IL6, TNFα, ST2, OPN, chemok-
ine ligands such as CXCL9, CXCL10, and CXCL11 (5–14), cellu-
lar biomarkers including immune cells subpopulations (15–18), 
miRNA (19), and others. However, none of these biomarkers have 
been clinically validated. In addition, all these markers are indica-
tive of immune system derangement, lacking information on the 
damaged tissue targeted by the alloimmune process. Thus, there is 
an unmet need for simple objective tools that can aid the treating 
physician in easier identification and scoring, and can assist with 
personalization of management in patients suffering from cGVHD.

Classic liquid biopsies analyze circulating cell-free DNA (cfD-
NA) via genetic variations or mutations in the DNA of a fetus, a 
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Results
DNA methylation markers for targeted assessment of cGVHD-rel-
evant tissue damage. We compared publicly available methy-
lomes of specific human tissues (21) and identified genomic 
loci containing CpG sites that are uniquely unmethylated in 
specific tissues or cell types, relevant to cGVHD. These includ-
ed hepatocytes (5 markers), skin (5 markers), lung epithelial 
cells (10 markers), and intestinal epithelial cells (8 markers). 
We designed multiplex PCR cocktails to amplify all these loci 
from genomic DNA after bisulfite conversion and sequenced 
the products to determine the fraction of unmethylated DNA 
molecules present in the starting material. Figure 1 shows the 
fraction of methylation blocks from each marker locus that were 
unmethylated in the indicated samples. As we have shown pre-
viously, molecules containing multiple unmethylated CpG sites 
could be assigned with extreme specificity to a given tissue of 
origin. We also spiked genomic DNA from specific tissues into 

tumor, or a transplanted solid organ. However, these approaches 
are blind to DNA released from cells with a normal genome, as 
would occur in organs damaged by pathologies such as GVHD. 
We and others have previously shown that tissue-specific DNA 
methylation patterns can provide powerful, universal biomark-
ers for detecting the tissue origins of cfDNA, reflective of ele-
vated turnover or damage in specific organs and regardless of 
the underlying pathology (20–22). For example, we showed that 
genomic loci specifically unmethylated in lung epithelial cells or 
in hepatocytes can serve as cfDNA biomarkers to detect specific 
lung or liver injury (20–26).

The aim of this study was to establish a set of affordable, yet high-
ly specific and sensitive methylation markers for cell types relevant 
to patients at risk for developing cGVHD, to examine their utility for 
detection of damage to specific organs in patients with clinically sus-
pected cGVHD, and to create a cfDNA-based model that can assist 
the treating physician in surveillance and treatment decisions.

Figure 1. Characterization of methylation biomarkers. Tissue specificity of methylation markers for liver (A), intestinal epithelium (B), lung epithelium 
(C), and skin (D). Each color represents a different marker.

https://doi.org/10.1172/JCI163541
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cian as having clinically evident cGVHD. The 
NIH 2014 criteria were used for defining dis-
ease severity (mild, moderate, and severe) and 
organ scoring (range 0–3).

Analyzing 101 samples from 101 patients; 
patients undergoing HCT with cGVHD (in 
any organ) had statistically significant higher 
concentrations of total cfDNA compared with 
patients undergoing HCT with no clinical evi-
dence of cGVHD (P < 0.0001) (Figure 3A). Total 
cfDNA levels in patients undergoing HCT were 
similar to those in healthy controls (P = 0.63).

cfDNA signals from skin (P = 0.0188), intes-
tine (P = 0.009), liver (P = 0.0023), and lungs (P 
= 0.0050) were also significantly higher in the 
group with clinically evident cGVHD compared 
with the group of patients who did not meet the 
NIH 2014 criteria for cGVHD (Figure 3, B–E). 
In addition, the concentration of cfDNA origi-
nating from GI, liver, and lung was significantly 
higher in patients who underwent HCT with no 
evidence of clinical GVHD compared with peo-
ple in the healthy control group (P = 0.0002, P 
= 0.0003, and P < 0.0001, respectively) (Figure 
3, C–E). Moreover, cfDNA originating from skin 
and liver significantly correlated with organ-spe-
cific clinical GVHD presence (score 0 versus 

score 1–3) (P = 0.0022, P = 0.0003, Supplemental Figure 1, A and 
C, respectively). Interestingly, patients undergoing HCT with and 
without lung cGVHD (score 0 versus 1–3) had significantly higher 
levels of lung cfDNA compared with healthy controls (P < 0.0001), 
but lung cfDNA did not correlate with the presence of clinical lung 
score (Supplemental Figure 1B).

Analysis of immune-derived cfDNA showed a significant-
ly higher concentration of cfDNA originating from neutrophils, 
monocytes, eosinophils, and B and T lymphocytes in patients 
undergoing HCT diagnosed with clinical cGVHD compared with 
patients who were not diagnosed (Figure 4). cfDNA from neutro-
phils, T cells, and CD8+ T cells was elevated in patients undergoing 
HCT who have no clinical cGVHD compared with people in the 
healthy volunteer group (Figure 4, A, E, and F).

We next sought to identify correlations between cfDNA 
parameters and cGVHD clinical scores among patients under-
going HCT. We produced a correlation matrix for all 101 plasma 
samples for which all tested parameters were available. cfDNA 
parameters were highly correlated internally — for example, sam-
ples with high concentration of total cfDNA tended to also have 
high levels of organ specific cfDNA (Figure 5 and Supplemental 
Figure 2) — and there was a significant internal correlation among 
cGVHD clinical scores, between cGVHD severity assessment and 
specific organ grading (Supplemental Figures 3 and 4). Moreover, 
we found a significant correlation between clinical cGVHD sever-
ity assessment and total cfDNA as well as organ specific cfDNA 
levels (Figure 5 and Supplemental Figures 3–5).

A combined score for blood-based detection of cGVHD. We 
wished to create a model that could aid the treating physician to 
predict the likelihood that a patient has active cGVHD. Employ-

genomic DNA of leukocytes to determine assay sensitivity and 
linearity and found that as little as 0.5% of DNA from the tar-
get tissue could be robustly identified when present in a mixture 
(not shown). These findings establish a cocktail of DNA methyl-
ation markers that can be used to identify DNA derived from the 
liver, skin, lungs, and intestine with extreme specificity and sen-
sitivity. We also used methylation markers specific to selected 
immune and inflammatory cell types: neutrophils, eosinophils, 
monocytes, B lymphocytes, and T lymphocytes (including CD8+ 
and regulatory T cells); all of which showed extreme specificity 
and sensitivity (27).

Elevated cfDNA levels in patients undergoing HCT with and 
without clinical GVHD. The overall scheme of the experiment 
is shown in Figure 2. We recruited a total of 101 patients who 
underwent HCT, obtained blood samples, and recorded clini-
cal cGVHD scores as well as blood counts and standard blood 
biochemistry. We determined plasma cfDNA concentration and 
methylation patterns, compared findings to clinical and bio-
chemistry data, and then developed and validated a model for 
inference of cGVHD based on cfDNA parameters combined with 
blood biochemistry markers (Figure 2). The characteristics of the 
101 recruited patients and samples are detailed in Supplemen-
tal Tables 2–4 and in the Methods section; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI163541DS1.

We compared total and tissue-specific cfDNA concentra-
tion in samples from healthy individuals (median age 37 years 
old (range 24–68), 58% women and 42% men), samples from 
patients who underwent HCT and had no evidence of cVHD 
from patients undergoing HCT defined by the treating physi-

Figure 2. Experimental design. 101 plasma samples were collected from 101 individuals arriving 
for planned clinical follow up at the BMT day care unit. Upon each visit blood was drawn for 
regular blood tests and the patient underwent a full assessment by the treating physician, 
which included cGVHD grading according to the 2014 NIH criteria. 93 samples were employed 
for modeling, excluding those with missing data. cf, cell free; AST, aspartate transaminase; ALP, 
alkaline phosphatase; GGTp, γ glutamyl transpeptidase.
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cross-validations across these 7 feature sets, starting from the 
feature having the highest value, ALT, and sequentially adding 
the next feature in line (e.g., ALT and total cfDNA; ALT, total 
cfDNA, cfDNA of monocytes, etcetera). The metrics (specific-
ity, negative predictive value [NPV], positive predictive value 
[PPV], AUC, and precision) for each number of features select-
ed are illustrated in Figure 7. Notably, the 3 first features max-

ing Shapley analysis (28) on 17 clinical and cfDNA features (see 
Methods) yielded positive Shapley values for 7 features, includ-
ing alanine transaminase (ALT), total cfDNA, cfDNA of mono-
cytes, cfDNA of skin, GGTp, cfDNA of neutrophils, and cfDNA 
of eosinophils. Figure 6A shows distribution graphs for these 
features, and Figure 6B shows the average absolute Shapley val-
ues for each individual feature. We conducted repeated 5-fold 

Figure 3. cfDNA levels correlate with clinical presence of cGVHD. (A) Level of total cfDNA in healthy volunteers and patients undergoing allogeneic HCT 
with and without clinical signs of cGVHD. (B–E) Tissue-specific cfDNA (genome equivalents per mL plasma) in healthy volunteers and patients undergoing 
allogeneic HCT with and without clinical signs of cGVHD, using average signals from methylation markers of skin (B), gastrointestinal tract (C), liver (D) and 
lung (E). Each dot represents 1 plasma sample. Statistical analysis was performed using nonparametric 2-tailed Mann-Whitney test. cfDNA ng/mL, total 
cell free DNA levels in ng/mL; GI, gastrointestinal.

https://doi.org/10.1172/JCI163541
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mization (allowing negative coefficients). Shapley values are 
shown for all 17 features (Supplemental Figure 6). The metrics 
(specificity, NPV, PPV, AUC, and precision) for each are illus-
trated in Supplemental Figure 7. Favorable behavior across 
all metrics was reached at (ALT, γ glutamyl transpeptidase 
(GGTp), total cfDNA, cfMonocytes, cfEosinophils, and alka-
line phosphatase (ALP)) and repeated 5-fold cross-validation 
was performed to compare the recall, specificity, AUC, NPV, 
and PPV of logistic regression models trained using these fea-
tures (Supplemental Figure 8A), as well as the ROC curves of 
these models (Supplemental Figure 8B).

imize the AUC, as well as displaying favorable behavior across 
the other metrics. Therefore, we opt for these 3 features (con-
sisting of ALT, total cfDNA,and cfDNA of monocytes) as the 
optimal feature set. Recall, specificity, AUC, NPV, and PPV of 
logistic regression models trained using only ALT, only cfDNA 
features (total cfDNA and cfDNA of monocytes), and all 3 fea-
tures are shown in Figure 8A. The ROC curves of these models 
are shown in Figure 8B.

Finally, we compared the performance of our models to 
the exact equivalent set of models, where, instead of using 
a constrained optimization, we used an unconstrained opti-

Figure 4. Immune-derived cfDNA levels correlate with clinical presence of chronic GVHD. Level of immune specific cfDNA in healthy volunteers and 
patients undergoing allogeneic HCT with and without clinical signs of cGVHD, using average signals from methylation markers of neutrophils (A), mono-
cytes (B), eosinophils (C), B cells (D), T cells (E), CD8+ cells (F), and Tregs (G). Each dot represents 1 plasma sample. Statistical analysis was performed using 
nonparametric 2-tailed Mann-Whitney test.
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Evidently, both constrained and unconstrained optimiza-
tion techniques demonstrate comparable performance, sug-
gesting minimal overfitting with either optimization technique. 
Moreover, the findings emphasize the high predictive capability 
of a small set of features, consisting of biochemical and cfDNA 
measurements. This aligns with our hypothesis that cGVHD 
leads to increased cell death, consequently elevating the levels 
of the observed markers.

Discussion
Our study shows that tissue-specific DNA methylation patterns 
can serve as plasma biomarkers for detection of tissue turnover 
in cGVHD. We demonstrated a general elevation in cfDNA con-
centration in patients with cGVHD, and an elevation of cfDNA 

from specific organs as well as immune and inflammatory cells. 
Combining cfDNA markers with standard biochemical markers 
allowed us to discriminate patients with and without cGVHD with 
good sensitivity, accuracy, and precision, suggesting feasibility of 
a blood-based objective assessment of disease.

In agreement with our findings, it has been demonstrated that 
mitochondrial cfDNA (COX1 DNA) is higher in patients undergo-
ing SCT compared with people who are in the normal control group 
and correlates with the presence of cGVHD (29). To our knowledge, 
this is the first report of potential tissue-specific cfDNA utility in 
the context of chronic GVHD. Our findings are consistent with, and 
expand upon, recent studies that focused on the distinct setting of 
aGVHD (30). Cheng et al. used a smaller number of patients (n = 
27) and performed shallow whole genome bisulfite sequencing fol-

Figure 5. Matrix of correlations between cfDNA and clinical parameters among patients who underwent transplants. Spearman rank correlation coeffi-
cient and significance of correlations *P < 0.05; **P < 0.01; ***P < 0.001. cf, cell free DNA; cfDNA ng/mL, total cell free DNA levels in ng/mL.

https://doi.org/10.1172/JCI163541
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lowed by deconvolution, to assess the levels of cfDNA from differ-
ent recipient sources. Their key finding was that aGVHD — within 
the first 3 months after HCT — was associated with elevated levels 
of cfDNA from solid organs (multiple tissues combined). Water-
house et al. (31) demonstrated substantial differences in the con-
centration of 1 colon-specific and 1 liver-specific cfDNA marker in 
10 and 14 patients with liver and colon aGVHD, respectively. More-
over, they have demonstrated a decline in these markers in patients 
who were successfully treated. The clinical condition that we stud-
ied — cGVHD — is more challenging, as clinical manifestation is 
typically less abrupt and therefore tissue damage/turnover, which 
might be reflected by elevated cfDNA levels, is likely to increase 
gradually. In addition, our approach differs from Cheng et al. in that 
we use a PCR-Seq of targeted methylation markers to assess the 
contribution of specific cell types — a method that gives up breadth, 
i.e., information obtained is limited to a preplanned subset of tissue 
sources — for specificity, depth, simplicity and low cost. In contrast 
to the Waterhouse study, our methodology probes multiple indi-
cators for each organ, allowing us to examine a broader spectrum 

of damaged end organs. Altogether, these 3 studies 
support the notion that organ damage/turnover and 
immune deregulation in GVHD are amenable for a 
cfDNA methylation–based analysis, and that liquid 
biopsies can be developed into an objective, quantita-
tive, clinically useful tool aiding the treating physician 
in diagnosing chronic as well as acute GVHD.

An important observation of our study was that 
most patients undergoing HCT with no clinically 
detected GVHD had an elevated concentration of the 
cfDNA derived from donor T cells and recipient intes-
tine, liver, and lung. We propose that this is a reflection 
of inflammation and increased cellular turnover in 
patients undergoing HCT, which are taking place even 
while clinically evident organ function remains in the 
normal range. This idea is consistent with the model 
proposed by Cooke et al., whereby cGVHD develops 
through early inflammation and tissue injury, chronic 
inflammation, dysregulated immunity, and, eventually, 
aberrant tissue repair leading to fibrosis (32). Our study 
was not designed to test if elevated cfDNA from a given 
tissue source is predictive of future cGVHD. Addition-
ally, larger cohorts will be needed to assess the prognos-
tic potential of methylation-based biomarkers. Such 
studies will also be able to test the provocative idea that 
elevated tissue-specific cfDNA takes place chronically 
even without an overt clinical manifestation, reflecting 
a low level of allogeneic damage to host tissues that is 
offset by organ regeneration.

Our study also provides a distinct angle on the 
nature of immune processes taking place in cGVHD. 
Extensive studies have revealed the involvement 
of reactive donor T cells (mainly Th/Tc17), thymic 
dysfunction, reduced memory B cell formation con-
comitant with enrichment of alloreactive B cells, 
reduced levels of T follicular helper cells, macro-
phage tissue sequestration and activation, and more 
(3, 16, 17). These studies have typically not character-

ized immune cell turnover. Our findings suggest that allogeneic 
HCT causes high turnover of donor T cells (including CD8 and, 
to a lesser extent, regulatory T cells), at any point after HCT and 
more so during cGVHD. We hypothesize that the elevated turn-
over of donor adaptive and innate immune cells, even years after 
HCT, results from the continuous interaction with allogeneic host 
tissues. The mechanisms and implications of this phenomenon 
remain to be elucidated. At a practical level, it is possible that com-
bining cfDNA biomarkers of solid tissues with cfDNA biomarkers 
of inflammatory / immune cells may increase the specificity of liq-
uid biopsies, e.g. will allow us to differentiate organ damage due to 
immune attack from damage due to other etiologies (33). Further 
studies are needed to examine this intriguing possibility.

Implementation of tissue-specific cfDNA biomarkers in clinical 
GVHD will require additional studies to optimize specificity and 
sensitivity and to understand how cfDNA dynamics relate to and 
predict clinical phenotype. We note that the nature of DNA methyl-
ation offers a tremendous potential for refining cfDNA analysis. For 
example, methylation atlases (21, 34) allow us to develop new meth-

Figure 6. Shapley analysis of cfDNA and clinical features. Evaluation of the contribution 
of each feature to the model’s prediction of cGVHD. The parameter space of the model was 
constrained to be nonnegative for all coefficients, thus showing only features with a non-
negligible coefficient. (A) Shapley value distributions (B) The average absolute SHAP value 
for each individual feature (ALT, cfDNA ng/mL, cfMonocytes, cfSkin, GGTp, cfNeutrophils, 
cfEosinophils). cf, cell free DNA; cfDNA ng/mL, total cell free DNA levels in ng/mL; ALT, 
alanine transaminase; GGTp, γ glutamyl transpeptidase.

https://doi.org/10.1172/JCI163541
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specificity of 86%, a positive predictive value 
(PPV) of 89%, and a robust AUC value of 0.8. 
Notably, what we believe sets our approach 
apart is its efficiency in capitalizing on a bal-
anced selection of a single biochemical param-
eter and a pair of distinct cfDNA parameters. 
This pragmatic strategy not only streamlines the 
diagnostic process but also markedly enhances 
the ability to accurately discern cases of cGVHD. 
Conceptually, we believe that combined mea-
surements of classical markers such as liver 
enzymes and cell counts with cfDNA biomark-
ers is expected to synergize. The reason is that 
cfDNA provides distinct biological information; 
it reveals cell turnover, which is different from 
cell counts; it is a definitive marker of cell death 
(while cytoplasmic proteins may be released to 
blood upon transient cell injury); and it is cleared 
rapidly, revealing information about acute tis-
sue damage. Particularly intriguing is the role 
of cfDNA derived from monocytes and macro-
phages, suggesting a pivotal role of macrophage 
turnover in the context of cGVHD. This observa-
tion is consistent with current understanding of 
the contribution of macrophage infiltration and 
activation within affected organs to the pathobi-
ology of the disease (35).

Our study has several limitations. First, we 
acknowledge that the assay used in this study, 
based on massively parallel sequencing, may 
pose challenges to implementation in a stan-
dard clinical setting. However, as we have shown 
before, the small number of target loci makes it 

possible for translation into a simpler version, based on quantita-
tive PCR (20). Such a version will have the advantage of delivering 
results faster (same day), at a low cost and in a point-of-case set-
ting. Second, the process underlying elevated tissue-specific cfDNA 
is not fully understood; for example, it could reflect an increased 
rate of cell death in the tissue of origin, enhanced turnover rate, or 
disruption of local removal of debris from dying cells. Regardless, 
elevated cfDNA appears to correlate well with clinical cGVHD. 
Third, our study was designed for diagnostic purposes only and 
not for predictive, prognostic, or response to treatment purposes. 
These need to be explored in separate, well-designed, prospective, 
longitudinal studies including a large cohort of patients who have 
undergone transplants. This research should delve into the chang-
es in cfDNA patterns over various time points, commencing before 
the conditioning protocol, spanning the transplantation phase, and 
encompassing the periods of acute and chronic GVHD. Fourth, this 
is a single center study and further validation studies using indepen-
dent cohorts from additional centers are needed.

In conclusion, we demonstrate the potential utility of tissue-spe-
cific methylation markers for objective and clinically useful detec-
tion of cGVHD. We envision that cfDNA biomarkers can transform 
GVHD treatment into a highly personalized process, where patients 
are monitored by liquid biopsy many times after transplant and 
during treatment to monitor disease and adjust treatment.

ylation markers that are specific to hepatocytes from different zones 
in the liver, alveolar or bronchial epithelial cells, epithelial cells of 
different segments of the intestine, as well as subsets of immune 
cells such as tissue-specific macrophages. With regard to sensitivity, 
emerging lessons from cfDNA-based early cancer detection suggest 
that parallel assessment of multiple specific markers in the same 
plasma sample can boost sensitivity by increasing the chance of 
identifying cfDNA from the tissue of interest. Such refinements of 
cfDNA assays may facilitate discrimination between suggested bio-
logical subgroups of GVHD (resolved GVHD, active late aGVHD, 
active cGVHD, inactive cGVHD and no GVHD), which is challeng-
ing in the current clinical setting. In particular, it will be important 
to search for cfDNA biomarkers that distinguish active chronic 
from inactive chronic disease, given the relevance for treatment 
decisions (32). We note that while our results reveal a good correla-
tion between cfDNA and clinical overt cGVHD, there are outliers 
showing high cfDNA with no clinical disease and low counts with 
clinically graded disease. We propose that this discrepancy partly 
results from the inability of the current clinical grading system to 
accurately assess the active versus inactive state of cGVHD. Longi-
tudinal studies assessing this hypothesis are warranted.

Using multivariate logistic regression, we pinpointed a trio of 
pivotal features (ALT, total cfDNA concentration, and monocyte/
macrophage cfDNA concentration) yielding compelling results: 

Figure 7. Variation of metrics based on number of features. Visual representation of metrics 
(specificity, sensitivity, AUC, NPV, and PPV) based on the addition of features according to their 
importance as determined by Shapley analysis. Purple line, PPV; blue line, specificity; green line, 
ROC; orange line, sensitivity; red line, NPV.

https://doi.org/10.1172/JCI163541
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as described (27, 36). Primer sequences of all markers, as well as 
clinical and methylation data for all samples are provided in Sup-
plemental Tables 1 and 2.

Clinical assessment of patients undergoing HCT in the chronic setting. 
To assess the utility of cfDNA for detecting organ damage in cGVHD, 
we prospectively collected 101 plasma samples from 101 individuals 
more than 100 days after allogeneic stem cell transplantation, arriving 
for planned routine clinical follow up, at the Bone Marrow Transplant 
(BMT) day care unit at Hadassah medical center. Upon each visit blood 
was drawn for regular blood tests (extra 10 mL of blood was drawn 
for cfDNA analysis) and the patient underwent a full assessment by 
the treating physician which included cGVHD grading according to 
the 2014 NIH criteria. During the course of this 38-month study, 65 
patients were diagnosed at any point with clinically evident cGVHD, 
while 36 were not found to have clinical signs of cGVHD.

Patient characteristics. The median age of patients was 47 years. 
A total of 65% of the patients were men and 35% were women. The 
majority of patients underwent transplant due to acute myeloid leu-
kemia (57%), had a matched sibling (63%), were treated with a mye-
loablative conditioning regimen (64%) and received stem cells with-
drawn from peripheral blood (PBSC, 92%). Most of the patients (55%) 
received a transplant from a matched sex, while 25% were transplant-
ed from a mismatched donor sex, in a female to male direction.

Of the 101 samples, 57% were collected from patients with a his-
tory of aGVHD. None had signs of overlap (both acute and chronic) 
GVHD at the time of sampling. A single patient developed liver GVHD 
1 month after Donor Lymphocyte Infusion (DLI). The median time 
from transplantation was 783 days (range 101–7,878 days). Half of the 
samples (n = 49 samples) were taken from patients receiving 1 or more 
immunosuppressive agents at the time of collection. Only 7 patients 
had evidence of CMV viremia at the time of collection. One patient 
had biopsy-proven colitis, which did not show CMV inclusion bodies, 
while none of the remaining 6 had any evidence for CMV disease. 
Four patients were treated for CMV infection. Eleven patients had a 
positive EBV-PCR in peripheral blood (with a median of 300 copies/
mL), none of which was clinically significant. One patient was positive 
in the upper respiratory tract for RSV and another for influenza. One 
patient had staphylococcus epidermis bacteremia. Chimerism levels 
were routinely monitored. 98% of the samples were obtained from 
patients with a blood driven STR assay indicating 100% donor-derived 
hematopoietic cells. Two samples exhibited a donor chimerism rang-
ing from 88%–92%, precluding analysis of the relationship between 
degree of chimerism, cfDNA methylation profiles, and a potential 
relapse. None of the samples were taken at the time of relapse.

Statistics. Assessment of cfDNA plasma levels in healthy controls 
versus allogeneic transplanted patients with and without clinical signs 
of cGVHD was performed using nonparametric, unpaired, Mann 
Whitney test. Analyses were performed using GraphPad Prism (ver-
sion 10.0.1), and results were considered statistically significant for P 
values of less than 0.05.

We used machine learning to evaluate the predictive power of 
both cfDNA and biochemical measurements in relation to clinical evi-
dent cGVHD. We compared multivariate logistic regression (MLR), 
XG boost and random forest (RF) classifiers on our data set. MLR, 
XGboost, RF had an average accuracy of 0.74, 0.67, and 0.65, respec-
tively, by Repeated-K-fold cross-validation (K = 5) with a SD of 0.23, 
0.22, and 0.3, respectively. As the MLR model had both higher accu-

Methods
Methylation analysis. We prepared cfDNA and measured its con-
centration (in nanograms per milliliter plasma), then treated with 
bisulfite to expose the status of methylation and performed multi-
plex PCR as described (36) to amplify marker loci. PCR products 
were sequenced on a NextSeq machine (Illumina), and the fraction 
of molecules carrying a tissue-specific pattern of methylation was 
determined. We used this information, averaged over the markers 
for each tissue, to assess the relative contribution of each tissue to 
cfDNA. In addition, by multiplying the proportion of cfDNA from 
each tissue by the total concentration of cfDNA in a sample, we 
calculated the absolute concentration of cfDNA from each tissue 
to plasma, expressed in genome equivalents per milliliter plasma, 

Figure 8. Repeated 5-fold cross-validation results on the best feature set. 
(A) Bar plot of metrics for solely clinical laboratory features (red, ALT), solely 
cfDNA features (green, cfDNA ng/mL, and cfMonocytes) and combined 
(blue, ALT, cfDNA ng/mL, and cfMonocytes) (B) ROC curves for solely clinical 
laboratory features (red, ALT; AUC = 0.65), solely cfDNA features (green, 
cfDNA ng/mL, and cfMonocytes; AUC = 0.74) and combined (blue, ALT, 
cfDNA ng/mL, and cfMonocytes; AUC = 0.81). cf, cell free DNA; cfDNA ng/
mL=cell free total DNA levels in ng/mL.
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Graphical representation of the tradeoff between specificity and 
sensitivity was done using the receiver operating characteristics curve 
(ROC). AUC was calculated in order to determine the ability of the 
classifier to distinguish positive and negative results. Spearman rank 
correlation was used to determine the significance of correlation 
between each pair of variables and other parameters.

Study approval. The study was approved by the Hadassah Med-
ical Center IRB committee and is consistent with the declaration of 
principles of Helsinki. Written informed consent was received prior to 
participation.

Data availability. Primer sequences of methylation markers, as 
well as clinical and methylation data values for all samples are provid-
ed in Supplemental Tables 1 and 2. Values for all data points in graphs 
can be found in the Supplemental Table 5: Supporting Data Values file.
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racy with similarly robust results by cross validation, we applied MLR 
for further analyses. Furthermore, MLR emerges as the most fitting 
estimator based on the following considerations: (a) We anticipate 
that GVHD will consistently increase the levels of measured mark-
ers, signifying increased cell death. Hence, a monotonous model that 
consistently increases in response to changes in its features should be 
appropriate. (b) The size of our data does not support models with a 
large number of parameters — MLR bears a single parameter per mea-
surement, reducing the risk of overfitting. (c) MLR inference naturally 
provides a probability score.

We hypothesize that measurements of cfDNA and blood bio-
chemical values possess significant predictive potential for the 
presence of cGVHD. We leveraged Shapley values to gauge the mag-
nitude of the predictive capability of each feature. This latter tech-
nique offers a principled approach to feature selection, promoting 
enhanced performance with reduced overfitting. Since we expect 
higher cfDNA levels to indicate cGVHD, we constrained the parame-
ter space of the model to be nonnegative for all coefficients and com-
pared the performance to an unconstrained optimization in order to 
explore the overfitting potential of the model. A total of 93 samples 
(for which data was available for all parameters) were used for the 
analysis. We employed Shapley analysis (28) on a collection of 17 
features (comprising of GGT, ALP, ALT, AST, TBil, Total cfDNA lev-
el [presented in ng/mL], and organ specific cfDNA: cfSkin, cfLung, 
cfGI, cfLiver, cfNeutrophils, cfMonocytes, cfEosinophils, cfB cells, 
cfT cells, cfCD8 cells, and cfTregs cell). Next, to robustly validate 
the predictive potential of the features, we utilized Repeated-K-Fold 
cross-validation (37). We conducted repeated 5-fold cross-valida-
tions across the feature sets given a positive coefficient (constrained 
optimization). Each set, labeled, consists of the highest-ranking fea-
tures, meaning, set =1 is the single top-ranking feature, set =2 con-
sists of the 2 top ranking features, set =3 of the 3 top ranking features 
and so on. The metrics (Specificity, NPV, PPV, AUC, and Precision) 
for each were calculated. The selection of the best feature set was 
determined based on those achieving the highest AUC and demon-
strating favorable performance across other metrics. We calculated 
recall, specificity, AUC, NPV, and PPV of logistic regression models 
trained using only the best feature set. A comparison of cfDNA fea-
tures compared with blood biochemical features and with the combi-
nation of both (meaning the entire set) was performed. All analyses 
were performed using Python 3.10.

Using the model, accuracy ([(TP+TN)/Total testing samples] 
x100%), specificity ([TP/(TP+FN)] x100%), sensitivity([TN/
(TN+FP)] x100%), PPV ([TN/(TN+FN)] x100%) and NPV/precision 
([TP/(TP+FP)] x100%) were measured.
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