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Adenocarcinoma is the predominant histological subtype of lung cancer, the leading cause of cancer deaths 
in the world. At stage I, the tumor is cured by surgery alone in about 60% of cases. Markers are needed to 
stratify patients by prognostic outcomes and may help in devising more effective therapies for poor prognosis 
patients. To achieve this goal, we used an integrated strategy combining meta-analysis of published lung can-
cer microarray data with expression profiling from an experimental model. The resulting 80-gene model was 
tested on an independent cohort of patients using RT-PCR, resulting in a 10-gene predictive model that exhib-
ited a prognostic accuracy of approximately 75% in stage I lung adenocarcinoma when tested on 2 additional 
independent cohorts. Thus, we have identified a predictive signature of limited size that can be analyzed by 
RT-PCR, a technology that is easy to implement in clinical laboratories.

Introduction
Lung cancer is the leading cause of cancer deaths in the world (1). 
The prognosis of non–small cell lung carcinoma (NSCLC) large-
ly depends on tumor stage; indeed, the overall low survival rate 
(about 15% at 5 years; ref. 2) is primarily due to the high frequency 
of late diagnosis, when the tumor has become unresectable. Con-
versely, early-stage NSCLC patients (stage I–II) have a significantly 
better prognosis (30%–60% survival at 5 years; ref. 3).

One important issue in stage I NSCLC is that current diagnos-
tic tools do not allow precise prognostic evaluation. In turn, this 
limits the power of clinical trials aimed at ameliorating prognosis 
through multimodality therapy. A case in point is represented by 
adjuvant chemotherapy, on which conflicting results in stage IB 
have been reported (4–6). Consequently, there is presently no indi-
cation for adjuvant treatment in stage I NSCLC (7, 8). Evidently 
enough, the availability of accurate prognostic markers might 
change this picture by allowing the selection, for clinical trials, of 
only those patients with a high risk of relapse. Thus, there is need 
for reliable prognostic indicators, both for diagnostic and prog-
nostic purposes and for the design of clinical trials.

Microarray gene expression profiling has been used to identify 
molecular subtypes of lung cancer associated with different prog-
nostic outcomes (9–20). Moreover, a proteomic-based approach 
allowed Yanagisawa et al. to distinguish histological subtypes of 
NSCLC as well as patients with resected tumors who had poor 
prognosis (21). One problem with these unbiased approaches, 
which is particularly evident in transcriptome analysis, is the 
high individual genetic noise associated with each profile, which 
causes relative instability of the resulting signatures when these 
are applied to independent datasets. In addition, these signatures 
tend to contain a high number of genes, and the methodology 
used is not directly transferable to the clinical setting. Thus, there 

is need to develop strategies aimed at the identification of small 
signatures that can be easily analyzed in the clinical laboratory.

As an alternative to unbiased tumor profiling, some groups have 
developed approaches based on the profiling of experimental mod-
els that mimic specific oncogenic events (22–25). These “biased” 
approaches allowed the identification of signatures, which were 
subsequently validated in real human cancers, that might other-
wise have been lost within the genetic noise of an unbiased profil-
ing experiment.

We reasoned that a combination of the 2 strategies held poten-
tial for better insights into the mechanisms of lung tumorigenesis 
and for the definition of more reliable prognostic markers. Here, 
we describe an approach that integrates patterns derived from 
microarray lung cancer profiling from an experimental model and 
from known individual prognostic genes. Through this strategy, 
we identified a 10-gene prognostic signature in stage I lung ade-
nocarcinoma, the predominant histological subtype of NSCLC. 
This signature, when tested by real-time PCR, a technology that 
can be rapidly implemented in a clinical setting, displayed excel-
lent predictive power.

Results
Strategy of the integrated approach. The general strategy of our 
approach is illustrated in Figure 1. Initially, we performed meta-
analyses on 2 published expression datasets of lung adenocarci-
nomas, totaling 170 patients, from studies by Beer et al. (ref. 9; 
henceforth the Michigan cohort) and by Bhattacharjee et al. (ref. 
10; henceforth the Harvard cohort). Patients (Supplemental 
Table 1; supplemental material available online with this article; 
doi:10.1172/JCI32007DS1) were divided into good- and poor-
prognosis groups according to their clinical outcomes (see Meth-
ods). A number of patients, who did not fit the established prog-
nostic criteria, were therefore excluded from the meta-analysis (see 
Methods). We refer to the datasets from the initial 170 patients as 
original datasets (Michigan, n = 86; Harvard, n = 84) and to those 
of the selected patients as reduced datasets or cohorts (Michigan, 
n = 41; Harvard, n = 60); each of these datasets included patients 
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with stage I, II, and III tumors. The reduced Michigan and Harvard 
datasets were then analyzed to obtain lists of genes that were dif-
ferentially expressed between good- and poor-prognosis patients. 
This led to the identification of a 49-gene prognostic model that 
exhibited good prognostic value on the Michigan and Harvard 
cohorts. More importantly, the 49-gene model was a good predic-
tor of prognosis (Figure 1) in a third independent cohort, com-
posed of 34 stage I lung adenocarcinomas (ref. 23; henceforth the 
Duke cohort).

To improve the model, we used a biased cancer signature of 28 
genes derived from an experimental model that mimics important 
cancer-related pathways (25). This signature was by itself predic-
tive of prognosis in the Duke cohort (Figure 1).

Finally, we combined genes from the 2 models. We also added 
3 genes identified in the literature as indi-
vidual prognostic markers for stage I lung 
adenocarcinoma (26–28). The resulting 
80-gene model was tested in a real-time 
PCR–based approach on a fourth cohort 
of patients (henceforth the IFOM train-
ing cohort) to define a predictive model 
using a limited number of genes as well 
as a readily accessible technical platform 
(Figure 1). By the leave-one-out validation 
method, we refined the model to a final 10-
gene model. The 10-gene model was tested 
on a fifth independent cohort of patients 
(henceforth the IFOM validation cohort) 
and on the Duke cohort (Figure 1).

Meta-analysis of 2 lung adenocarcinoma 
expression profile datasets. As a first approach, 
we assumed that a reliable list of genes that 
are differentially regulated in the good- 
versus poor-prognosis groups should be 

concomitantly found in indepen-
dent analyses of the reduced Michi-
gan and Harvard datasets (Figure 1).  
Therefore, we performed a class 
comparison test and identified 361 
unique differentially expressed genes 
(P < 0.05, parametric Student’s t test) 
in the reduced Michigan cohort and 
429 unique differentially expressed 
genes (P < 0.05, parametric Student’s 
t test) in the reduced Harvard cohort. 
Twenty genes were shared between 
the 2 lists (P < 0.05, parametric Stu-
dent’s t test). The modest overlap 
could be explained, at least in part, 
by the fact that the tumors from the 
2 cohorts were analyzed on different 
array platforms — carrying a substan-

tially different number of genes (Harvard, 9,096; Michigan, 5,588; 
of which 5,249 common genes were present) — with different pro-
tocols. Moreover, individual genetic differences can have an enor-
mous impact on genetic signatures. Thus, the inherent imbalance 
between conditions (hundreds of patients) and variables (thou-
sands of genes) may generate different signatures. Indeed, a recent 
study proposed that, to reach an overlap of 50% between 2 lists of 
prognostic genes, expression profiling studies would need several 
thousands of patients (29).

In a complementary approach, we assumed that a reliable list of 
genes should not necessarily be shared by the 2 independent analy-
ses (Figure 1). Hence, we searched for the most stably differentially 
expressed genes in each dataset, using a stringent P value cutoff  
(P < 0.001, parametric Student’s t test). We found 21 unique 

Table 1
The 10-gene model

GeneA	 Name	 Unigene	 t value	 Fold change (P)B

NUDCD1	 NudC domain containing 1	 Hs.558577	 –3.95	 1.80 (<0.001)
E2F1	 E2F transcription factor 1	 Hs.654393	 –2.63	 1.78 (0.016)
HOXB7	 Homeobox B7	 Hs.436181	 –2.59	 2.53 (0.017)
MCM6	 Minichromosome maintenance	 Hs.444118	 –2.57	 1.80 (0.019) 
	 complex component 6
SERPINB5	 Serpin peptidase inhibitor,	 Hs.55279	 –2.53	 3.95 (0.019) 
	 clade B (ovalbumin), member 5
E2F4	 E2F transcription factor 4,	 Hs.108371	 –2.51	 1.37 (0.019) 
	 p107/p130-binding
HSPG2	 Heparan sulfate proteoglycan 2	 Hs.651231	 –2.38	 1.58 (0.026)
SF3B1	 Splicing factor 3b, subunit 1, 155 kDa	 Hs.632554	 –2.32	 1.24 (0.029)
RRM2	 Ribonucleotide reductase M2 polypeptide	 Hs.226390	 –2.16	 2.56 (0.041)
SCGB3A1	 Secretoglobin, family 3A, member 1	 Hs.62492	 5.54	 0.01 (<0.001)

ASorted by t value. BMean fold change in poor- versus good-prognosis group.

Figure 1
Strategy of the study. Validation of 
models as good predictors of progno-
sis in the Duke and IFOM validation 
cohorts is indicated. For details, see 
Results and Methods.
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genes in the reduced Michigan cohort and 12 unique genes in the 
reduced Harvard cohort, for a total of 33 unique genes. In total, 
by combining the 2 approaches, we identified 49 unique genes 
(including 4 genes in common between the approaches), which we 
referred to as the 49-gene model.

Next, we analyzed the prognostic predictive accuracy of the  
49-gene model. Predictive accuracy for the reduced datasets was 
90% and 72% in the Michigan and Harvard cohorts, respectively 
(Supplemental Table 2). For the original datasets, predictive 
accuracy was 69% and 71% in the Michigan and Harvard cohorts, 
respectively (Supplemental Table 2). Of note, the 49-gene model 
performed well when compared with the 2 signatures derived by 
Beer et al. (9) from the Michigan cohort (Supplemental Table 2).

Finally, the performance of the 49-gene model was tested by 
Kaplan-Meier analysis on stage I adenocarcinomas (Figure 2). 
The 49-gene model was very effective in predicting overall survival 
in the stage I patients from both the Michigan and the Harvard 
cohorts (Michigan, n = 67; Harvard, n = 62; Figure 2 and Supple-
mental Figure 1A). In addition, when we tested a dataset from a 
third independent expression profile study, the Duke cohort (23), 
the 49-gene model proved remarkably effective in predicting prog-
nosis (Supplemental Table 2) and overall survival (Figure 2 and 
Supplemental Figure 1B).

Analysis of an in vitro–derived transcriptional signature. We have previ-
ously shown that a biased approach to cancer transcriptomes can 
lead to the identification of cancer signatures (25). In particular, 
a 28-gene biased signature was identified (Figure 1) by profiling 
terminally differentiated myotubes forced to reenter the cell cycle 
by the viral oncoprotein early region 1A (E1A). The expression of 
genes from this signature was frequently found to be altered in 
human neoplasia (25). Thus, we investigated whether the expres-
sion of these genes had predictive value in patients with stage I 
lung adenocarcinomas. We used the dataset from the Duke cohort, 
because it was the only one for which the expression data for all 28 
genes was available. As shown in Figure 3A, the biased signature 
effectively predicted overall survival, further confirming that a 

biased approach can lead to the discovery of cancer-relevant signa-
tures (see Supplemental Table 3).

A 10-gene prognostic model in stage I lung adenocarcinomas. The next 
step in our experimental approach was to integrate models derived 
from unbiased and biased screenings. Thus, we combined the  
49-gene model and the 28-gene biased signature. We also added 
3 genes (SCGB3A1, TERT, and EIF3S6; see Methods and Figure 1) 
identified in the literature as individual prognostic markers for 
stage I lung adenocarcinoma (26–28). This set of 80 genes dem-
onstrated excellent predictive power for overall patient survival 
in Kaplan-Meier analysis of the Duke cohort, the only one for 
which expression data for all 80 genes were available (Figure 3B 
and Supplemental Table 4).

The major goal of our efforts, however, was to identify a small 
number of genes, amenable to analysis using readily available tech-
nology (such as real-time PCR), that constitute a prognostic model 
that can be rapidly transferred to the clinical laboratory. Thus, we 
used TaqMan Low-Density Arrays (Applied Biosystems) to pro-
file the IFOM training cohort, a set of 25 patients with stage I  
lung adenocarcinomas (Supplemental Table 1). At the time of our 
analysis, TaqMan Low-Density Arrays were available for 53 of the 
80 genes (Supplemental Table 4). The results are summarized in 

Figure 2
The 49-gene model predicts overall survival. The 49-gene model was used to predict overall survival in the stage I subset of lung adenocarci-
nomas from the Michigan (n = 67 of the original dataset’s 86), Harvard (n = 62 of the original dataset’s 84), and Duke (n = 34) cohorts. Data are 
shown as the probability of survival, in a Kaplan-Meier plot, as a function of a favorable (red line) or unfavorable (green line) signature.

Figure 3
The 28-gene biased signature and the 80-gene model predict overall 
survival. The 28-gene biased signature (A) and the 80-gene model (B) 
were used to predict overall survival in stage I lung adenocarcinomas 
of the Duke cohort (n = 34). Data are shown as the probability of sur-
vival, in a Kaplan-Meier plot, as a function of a favorable (red line) or 
unfavorable (green line) signature.



research article

	 The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 11      November 2007	 3439

Supplemental Table 4. From these results, we excluded a number 
of genes that did not show variability between the good- and poor-
prognosis groups; 16 genes were therefore selected for further 
analysis using cutoff values of P ≤ 0.05 or fold change greater than 
1.5 (Supplemental Table 4).

The final prognostic model was obtained by the leave-one-out 
cross-validation procedure, with independent gene selection  
(P < 0.05 as cutoff; parametric Student’s t test). We found that on 
the IFOM training cohort, a 10-gene model (Table 1) displayed a 
predictive accuracy of 84% (sensitivity, 90%; specificity, 80%) and a 
P value of 0.004 after 2,000 random permutations of class labels.

To confirm the robustness of this new prognostic model, we 
used it on the IFOM validation cohort, an independent cohort of 
45 stage I lung adenocarcinomas (Supplemental Table 1). Univari-
ate and multivariate analysis showed that the 10-gene model pre-
dicted survival of patients more accurately than did tumor stage 
(IA versus IB), grading, age, sex, or presence of mutated KRAS 
(Table 2). The 10-gene model was also independent of tumor his-
tological subtype (bronchoalveolar cell carcinoma versus adeno-
carcinoma; Supplemental Table 5). Kaplan-Meier survival curves 
showed a significant difference in the survival rate of patients 
stratified according to the 10-gene prognostic model (P = 0.008, 
log-rank test; Figure 4). It is also of note that our 10-gene model 
showed very good predictive power in Kaplan-Meier analysis and 
multivariate analysis of the Duke cohort, for which microarray 
expression data for all 10 genes were available (Figure 4, Supple-
mental Figure 2, and Supplemental Table 6).

Importantly, the 10-gene model retained excellent predictive 
power also when patients with stage IA and IB disease were con-
sidered separately (Supplemental Figure 3). In particular, it was 
able to accurately predict prognosis in stage IA patients from both 
the IFOM and Duke cohorts. This is relevant, because the 5-year 
survival rate of stage IA NSCLC patients ranges from 67% to 77% 
(30–32) after surgery alone. Thus, in this group, molecular tools 
for prognostic prediction and patient stratification are greatly 
needed. On the other hand, the 10-gene model did not show pre-

dictive power on stage II–III adenocarcinomas (Supplemental Fig-
ure 2), possibly suggesting the existence of additional molecular 
mechanisms, occurring in more advanced lung carcinomas, that 
might influence the natural history of the tumor. Thus, the sum 
of our findings indicates that we have identified a prognostic sig-
nature specific for stage I lung adenocarcinoma.

One final question concerned the performance of our 10-gene  
model with respect to other prognostic models in NSCLC. Three 
prognostic models are described in the literature: a 5-gene model 
described by Chen et al. (33), and 50- and 100-gene models 
described by Beer et al. (9). These models were challenged against 
our 10-gene model on the independent Duke cohort of patients 
with stage I disease. While all of the models displayed good predic-
tive accuracy, the 10-gene model displayed an overall better per-
formance in terms of accuracy, sensitivity, specificity, and positive 
and negative predictive values (Table 3).

A fourth model composed of 134 genes was previously described 
by Potti et al. (16). This 134-gene “lung metagenes” model is some-
what different from our 10-gene model and from the other mod-
els described above. It is composed of several metagenes that are 
used to partition the samples recursively into smaller groups and 
predict recurrence through binary classification-tree analysis (16). 
Consequently, a direct comparison of our 10-gene model with 
the 134-metagene model on an independent cohort was unfea-
sible. However, when we compared the prognostic power of the 
134-metagene model (Table 3) as described by the authors (16), 
we found that its overall performance was similar to that of our 
model, which uses only 10 genes.

Discussion
When we embarked upon the analysis of stage I lung adenocar-
cinomas with our integrated approach, we did so with the pros-
pect of identifying more stable signatures than those obtained by 
unbiased profiling alone. As a consequence, we hoped to isolate 
a prognostic predictor that was of limited size and amenable to 
reduction into practice with technologies commonly available in 

Table 2
Univariate and multivariate analysis of various biological and biochemical parameters.

	 IFOM validation	 IFOM combined	 IFOM mutational analysis	
	 cohort (n = 45)	 cohorts (n = 70)	 cases (n = 39)A

Variable (subset)	 OD (95% CI)	 P	 OD (95% CI)	 P	 OD (95% CI)	 P

Univariate analysis
Age (≥64, <64)	 0.96 (0.29–3.16)	 0.946	 0.33 (0.24–1.61)	 0.336
Differentiation (well or moderate, poor)	 0.64 (0.14–2.54)	 0.534	 0.78 (0.29–2.07)	 0.621
Stage (IA, IB)	 0.44 (0.10–1.66)	 0.234	 1.14 (0.41–3.23)	 0.794
KRAS (mutant, WT)					     2.00 (0.49–8.24)	 0.327
10-gene model (poor, good)	 3.94 (1.17–14.4)	 0.026B	 7.22 (2.60–21.7)	 0.0002B	 4.00 (1.06–16.89)	 0.041B

Multivariate analysis
Age (≥64, <64)	 1.00 (0.26–3.90)	 0.995	 0.51 (0.16–1.50)	 0.232
Differentiation (well or moderate, poor)	 0.65 (0.13–2.92)	 0.584	 0.79 (0.24–2.40)	 0.679
Stage (IA, IB)	 0.38 (0.08–1.68)	 0.222	 0.94 (0.28–3.05)	 0.922
KRAS (mutant, WT)					     9.07 (1.27–187.9)	 0.058
10-gene model (poor, good)	 3.98 (1.13–15.5)	 0.036B	 7.78 (2.72–24.8)	 0.0002B	 13.19 (2.06–261.4)	 0.021B

The 10-gene model was tested for prediction of survival in the indicated cohorts of patients, in comparison to other biological or biochemical parameters, in 
univariate and multivariate analysis. OD, odds ratio; CI, confidence interval. ACases of the combined IFOM training and validation cohorts for which muta-
tional analysis of the KRAS gene was available. BStatistically significant value.
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the clinical laboratory. Indeed, we identified a 10-gene signature 
that, by real-time PCR technology, predicted prognosis and overall 
survival of patients with stage I lung adenocarcinomas. Further-
more, the 10-gene model appeared robust enough to withstand 
validation across different technological platforms, as shown by 
its predictive power on the Duke dataset, which was generated by 
Affymetrix technology.

The major difference between our approach and the widely 
employed, more traditional ones (9, 11, 13, 14, 18, 20) was our 
merging biased and unbiased signatures. A biased approach to can-
cer transcriptomes relies on the assumption that a limited number 
of altered signaling pathways leads to the development of a malig-
nant state. Thus, molecular tools that cause the transformation of 
genetically uniform cells in vitro might be used to circumvent the 
problems connected with unbiased transcriptome analysis, such 
as high individual genetic noise. We previously validated such an 
approach by showing that a signature obtained in myotubes that 
were forced to reenter the cell cycle by the E1A oncogene contained 
genes overexpressed in human tumors that could predict an unfa-
vorable prognosis in breast cancer (25). In the present study, we 
showed that the same biased signature could, by itself, predict 
clinical outcome in patients with stage I lung adenocarcinomas. 
It is of note that the 28-gene biased signature did not emerge from 
the analysis of lung cancer microarray datasets, either in this study 
or in other studies (9, 11, 13, 14, 18, 20, 33) — the only exception 
is SYNCRIP, reported in a recent study (16). This confirms the 

power of our biased approach in revealing gene 
expression programs not otherwise easily iden-
tifiable. Finally, the composition of the 10-gene 
prognostic model confirmed the hypothesized 
efficacy of our integrated approach, as it con-
sisted of 5 genes derived from the E1A signature 
(NUDCD1, E2F1, MCM6, RRM2, and SF3B1), 
4 genes from the meta-analysis of microarray 
data (HOXB7, SERPINB5, E2F4, and HSPG2), 
and 1 gene (SCGB3A1) from the literature.

We note that the 10-gene model, when test-
ed by real-time PCR or on Affymetrix datas-
ets (IFOM and Duke cohorts, respectively) in 
a total of 104 patients, displayed a predictive 
power of about 75% (79% for the Duke cohort, 
71% for the IFOM cohorts). This indicates the 
existence of a subgroup of patients for whom 
our model is not predictive. One possible expla-
nation for this is that the existence of geneti-
cally distinct subtypes of lung adenocarcinoma 
(10, 12) might have exerted a limited negative 
effect on the accuracy of our prognostic model, 
as well as of other published models (9, 16, 33). 
An alternative explanation is that, because of 

limitations in the availability of TaqMan Low-Density Arrays at 
the time we performed the experiments, we could only analyze 53 
of 80 genes of our 80-gene model to derive the final model. Thus, it 
will be interesting to extend our validation to the remaining genes 
in an attempt to achieve an even higher level of accuracy.

There are potential clinical implications of our findings. On 
the one hand, they provide prognostic tools. On the other, they 
might identify targets for molecular therapies or help to direct the 
choice of therapeutic regime. With respect to the first issue, one 
possible application of our model is patient stratification for the 
experimental testing of multimodality therapies. For instance, the 
disappointing results of adjuvant chemotherapy in stage I NSCLC 
might derive, at least in part, from the lack of reliable criteria for 
patient stratification, given the rather high rate of cure by sur-
gery alone. Our 10-gene model might provide such a tool. While 
this will require large-scale studies, the feasibility of such studies 
should be greatly enhanced by the characteristics of our signature 
and our methodology of analysis. We note that a similar approach 
has been recently proposed by Chen et al., who identified a 5-gene 
real-time PCR signature predictive of clinical outcome in NSCLC 
patients (33). We compared the performance of our signature with 
that of Chen et al. on the Duke cohort, which constitutes an inde-
pendent dataset for both signatures, and found that our signa-
ture performed significantly better. We ascribe this to the fact that 
we specifically focused on adenocarcinomas of the lung, both in 
our meta-analysis and in subsequent validations of the integrated 

Figure 4
The 10-gene model predicts overall survival. The 
10-gene model was tested to predict overall sur-
vival in the indicated cohorts of stage I (A) and 
stage IA (B) lung adenocarcinomas. Data are 
shown as the probability of survival, in a Kaplan-
Meier plot, as a function of a favorable (red line) or 
unfavorable (green line) signature.
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model, while Chen et al. derived their signature from a global anal-
ysis of major subtypes of NSCLC (both squamous carcinomas and 
adenocarcinomas). Squamous carcinomas and adenocarcinomas 
are distinct disease entities (34–36) with different gene expression 
patterns (10, 12). Therefore, although unique prognostic signa-
tures for NSCLC are more attractive because of their wider appli-
cability, using independent prognostic signatures for squamous 
carcinomas and adenocarcinomas may be more biologically sig-
nificant and less influenced by genetic heterogeneity.

An additional implication of our findings concerns their potential 
exploitation for the identification of novel therapeutic targets; this 
issue is directly linked to whether genes of our 10-gene model are 
relevant to lung carcinogenesis. Of course, no immediate biological 
implications can be derived from expression profile analysis. Never-
theless, we found it remarkable that, for many genes of our signature, 
there is ample literature indicating their association with cancer. For 
instance, the E2F family of genes, of which E2F1 and E2F4 are present 
in the signature, are crucial regulators of cell-cycle progression and 
have been implicated in numerous types of cancer (37, 38). MCM6 is 
part of a family of proteins essential for the formation of the prerep-
licative complex in G1 and for DNA replication in S phase. Deregu-
lation of the MCM complex results in chromosomal defects and is 
frequently detected in cancer (39, 40). SERPINB5 (MASPIN) is a serine 
protease inhibitor, with multifaceted functions in the regulation of 
cell adhesion, motility, apoptosis, angiogenesis, and development, 
that is being actively studied for its potential usefulness as a diag-

nostic cancer marker and a therapeutic target (41). Other genes of 
our signature, such as SCGB3A1 (HIN-1) or NUDCD1 (CML-66), have 
been reported to be altered in cancer (28, 42). While a comprehensive 
review of the relevant literature will be impossible here, it is clear that 
our signature identifies a set of genes whose involvement in cancer is 
already established or strongly suspected and that might constitute 
attractive targets for molecular therapies.

In this context, one of the most interesting genes is probably 
RRM2, which encodes the small subunit of the ribonucleotide 
reductase holoenzyme (RNR), an essential enzyme for DNA syn-
thesis. The other subunit of RNR is encoded by the RRM1 gene, 
whose mRNA levels correlate with shorter survival in gemcitabine/
cisplatin-treated advanced NSCLC patients (43–46). Interestingly, 
RRM2 is also associated with resistance to a variety of chemothera-
peutic agents, including gemcitabine (47, 48). In pancreatic adeno-
carcinomas, direct targeting of RRM2 by siRNA enhanced chemo-
sensitivity to gemcitabine both in vitro and in vivo (49). In NSCLC, 
gemcitabine is one of the most active chemotherapeutic agents 
(50). Our present findings establish that RRM2 is overexpressed 
in stage I lung adenocarcinomas and is part of a poor-progno-
sis signature in these tumors. Thus, RRM2 might constitute an 
appealing target for molecular therapies, also with the perspective 
of increasing responsiveness to certain drugs. At minimum, our 
findings should caution against the use of drugs such as gem-
citabine in clinical trials in stage I lung adenocarcinoma exhibiting 
the poor-prognosis signature described here.

Methods
Meta-analysis of expression datasets from microarray analysis. The original 
datasets included 86 adenocarcinomas analyzed by Beer et al. (Michigan 
cohort; ref. 9) and 84 adenocarcinomas analyzed by Bhattacharjee et al. 
(Harvard cohort; ref. 10). The 84 adenocarcinomas of the Harvard cohort 
correspond to those of the Michigan cohort, for the validation of their 
prognostic signature. Microarray expression datasets of the Michigan 
and Harvard cohorts (obtained on the HU6800 and HU95Av2 Affymetrix 
chips, respectively) and details of patient selection criteria and methods for 
data normalization are shown by Beer et al. (ref. 9 and http://dot.ped.med.
umich.edu:2000/ourimage/pub/Lung/index.html).

We gathered microarray expression datasets of a study by Bild et al. 
obtained on the HU133 2.0–plus Affymetrix chip (Duke cohort; ref. 23). 
Affymetrix CEL format files were processed using Microarray Suite version 
5 software (MAS 5; Affymetrix).

Analyses of gene expression data were performed using BRB ArrayTools 
version 3.3.1 (http://linus.nci.nih.gov/BRB-ArrayTools.html). Microarray 
spot intensities below the minimum value of 10 (the BRB software default 
for Affymetrix array analysis) were excluded, and arrays were then normalized 
(centered) using the median value of the signal over the entire array. When 
we derived the 49-gene signature for the Michigan and Harvard reduced 
datasets, genes were excluded if less than 20% of their expression data across 
the patients had at least a 1.5-fold change in either direction from the gene’s 
median value. Genes were also excluded if the percentage of data missing 
or filtered out exceeded 75%. All data were log-transformed (base 2). The  
2-sample parametric Student’s t test was used to select significant genes.

Class prediction analyses were performed with diagonal linear discrimi-
nant analysis. We estimated the prediction efficiency of the classifiers 
using the leave-one-out cross-validation, and the P value of each classifier 
was evaluated by 2,000 random permutations of the patient class labels.

Because data obtained with different microarray platforms were used 
in our study, the Affymetrix NetAffx web analysis tool was used to match 
probesets to identical genes.

Table 3
Comparison of the prognostic predictive accuracy of several 
prognostic models

Model	 Source	 AccA	 SensB	 SpecC	 PPVD	 NPVE

Duke cohort (n = 34)
10-gene	 IFOM	 79	 73	 84	 79	 80
5-gene	 (33)	 65	 67	 63	 59	 71
50-gene	 (9)	 74	 80	 68	 67	 81
100-gene	 (9)	 76	 80	 74	 71	 82

ACOSOG cohort (n = 25)
134-gene	 (16)	 72	 85	 58	 69	 78

CALGB cohort (n = 84)
134-gene	 (16)	 79	 68	 88	 79	 80

MAYO cohort (n = 15)
134-gene	 (16)	 80	 NA	 NA	 NA	 NA

The 10-gene model was tested for prognostic predictive accuracy and 
compared with 3 other models of 5, 50 and 100 genes reported previ-
ously (9, 33). The models were tested on the Duke cohort, because it 
represents an independent dataset for all models and because all the 
genes of the 4 models were present on the microarray platform used to 
generate the datasets of the Duke cohort. A fifth, previously reported 
prognostic model (134 genes; ref. 16) is shown for comparison. 
Because immediate comparison was impossible, the predictive accu-
racy of the model is reported as described in the original paper on 3 dif-
ferent cohorts of patients. NA, not available. AAccuracy (percentage of 
correctly predicted patients). BSensitivity (probability that a patient with 
poor prognosis will be predicted as having a poor prognosis). CSpecific-
ity (probability that a patient with good prognosis will be predicted as 
having a good prognosis). DPositive predictive value (probability that a 
sample predicted as poor prognosis actually belongs to the poor prog-
nosis group). ENegative predictive value (probability that a sample pre-
dicted as good prognosis actually belongs to the good prognosis group).
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Criteria for the selection of the reduced Harvard and Michigan datasets. To perform 
the meta-analysis on the Harvard and Michigan cohorts, we had to divide 
patients into good- and poor-prognosis groups according to their clinical 
outcome. We initially established the cutoff according to an international 
adjuvant lung cancer trial (IALT) that set the median disease-free survival 
of NSCLC patients at 30.5 months (51), which resulted in the exclusion of a 
number of patients. In addition, the analyses performed in this study strin-
gently required size-balanced classes of patients. Indeed, imbalance in class 
size can increase the number of false positives and false negatives (52–55). 
Thus, we had to modify the cutoff in some cases, as described below.

In the Harvard cohort, we labeled as good prognosis those patients who 
were alive and had a follow-up of at least 30 months. By this criterion, 
the good-prognosis group of the Harvard reduced dataset contained 33 
patients. Three patients who were labeled alive in the Harvard study were 
excluded because their follow-up was less than 30 months. We labeled as 
poor prognosis those patients who died before the 30-month cutoff. By 
this criterion, the poor-prognosis group of the Harvard reduced dataset 
contained 27 patients. Twenty-one patients who were labeled dead in the 
Harvard study were excluded because their death event occurred after 30 
months. In this case it was impossible to include these patients in the poor-
prognosis group because they died after the cutoff; at the same time, we 
reasoned that it was unwise to include them in the good-prognosis group 
because they died. By using these criteria, the Harvard reduced dataset con-
tained 33 good-prognosis and 27 poor-prognosis patients, thus fulfilling 
the requirement of balance in class size.

In the Michigan cohort, by applying the above parameters, the 2 classes 
were remarkably unbalanced (48 good-prognosis versus 18 poor-prognosis 
patients). Thus, while retaining the cutoff for the poor-prognosis group 
(death event before the 30-month cutoff), we had to change the cutoff for 
the good-prognosis group. In this case, we labeled as good prognosis those 
patients who were alive and with a follow-up of at least 50 months. By doing 
this, the reduced Michigan dataset resulted in 23 good-prognosis patients 
and 18 poor-prognosis patients, thereby obtaining 2 balanced classes.

A relevant question is whether the criteria used for the cutoffs introduced 
bias to the analysis and/or somehow led to overfitting of the data. This 
is excluded by the facts that the 49-gene model displayed good predictive 
power when applied to all stage I adenocarcinomas for the Harvard and 
Michigan cohorts, without any selection of patients (Figure 2), as well as 
when applied to the original datasets (Supplemental Table 2 and Supple-
mental Figure 2). In addition, the 49-gene model had good prognostic value 
when applied to a third independent cohort (Duke cohort; Figure 2).

In addition, as shown in Supplemental Table 2, we performed an addi-
tional control by changing the cutoff values, so as to include more patients 
in the meta-analysis. This led to the identification of a 71-gene signature 
(which shared 23 genes with the 49-gene model); however, this did not per-
form better than the 49-gene model when applied to the original Michigan 
and Harvard datasets and to the Duke cohort.

Patients and the IFOM cohorts. Clinicopathological data for all patient 
groups in the present study are in Supplemental Table 1.

Patients within the IFOM cohorts were selected within a consecutive 
series of 391 stage I (T1-2N0M0) NSCLC patients surgically treated at the 
Division of Thoracic Surgery, University of Pisa (Pisa, Italy), between 1994 
and 1999. Patient stage at the time of diagnosis was determined according 
to guidelines of the American Joint Committee on Cancer. The 70 patients 
selected for this study (25 and 45 for the training and validation cohorts, 
respectively) were selected solely on the basis of histotype (adenocarcino-
ma), availability of adequate tissue samples (>80% tumor cellularity), and 
complete follow-up data. Informed consent was obtained from all patients 
under study. Tumors were snap-frozen in liquid nitrogen within 10 min-
utes of excision and stored at –80°C. Total RNA was isolated with TRIzol 

(Invitrogen) according to the manufacturer’s instructions, and its quality 
was evaluated by gel electrophoresis and by 2100 Bioanalyzer (Agilent).

Criteria for selection of candidate prognostic genes from the literature. The purpose 
of our study was to identify a signature, at the mRNA level, amenable to 
straightforward reduction into practice by a technology of easy access in the 
clinical laboratory. Thus, we selected SCGB3A1 (HIN-1), EIF3S6 (INT-6), and 
hTERT because these genes were studied at the mRNA level in stage I NSCLC 
by real-time PCR and proved to have prognostic value (26–28). Several other 
prognostic markers were proposed for NSCLC (56–59). However, most of 
these markers were proposed based on studies at the protein level (essentially  
by immunohistochemistry), which, for our purposes, would first require 
their independent validation as prognostic markers at the mRNA level and 
then their validation as potential members of a prognostic model on inde-
pendent cohorts of patients. Thus, these markers were not considered for the 
purpose of this study. Similarly, we did not consider EGFR, which has been 
reported to be mutated in NSCLC, because the prognostic value of EGFR 
overexpression in untreated NSCLC remains controversial (60, 61).

TaqMan Low-Density Array analysis. TaqMan Low-Density Arrays were 
purchased from Applied Biosystems. Total RNA (0.5 μg) was reverse tran-
scribed with 200 U Superscript II RT (Invitrogen) and 250 ng random 
hexamers according to the manufacturer’s instructions. A reaction mix 
containing 75 ng of cDNA and 50 μl of 2× PCR Master Mix (Euregentec) 
in a final volume of 100 μl was then prepared and loaded in the array. PCR 
conditions were as follows: 2 min at 50°C, 10 min at 94.5°C, followed by 
45 cycles at 97°C for 30 s and 59.7°C for 1 min, on an Applied Biosystems 
7900HT PCR System.

The expression level of each gene was measured in triplicate, and a panel 
of 8 reference genes (RPL14, RPL18, AGPAT1, ACTB, TBP, GUSB, PPIA, and 
18S) was used. GeNorm software (62) was used to evaluate the expression 
stability of the reference genes. The average Ct value of each target gene 
was normalized against the geometric mean of the Ct values of the 8 refer-
ence genes. Universal Reference RNA (Stratagene) was used as calibrator 
for all the samples analyzed. The relative fold change of gene expression 
in lung cancer patients was calculated as 2–ΔΔCt, where ΔΔCt represents 
ΔCtsample – ΔCtuniv-ref.

Data were then analyzed using BRB ArrayTools version 3.3.1. Defini-
tion of the classifier was performed with the diagonal linear discrimi-
nant analysis and leave-one-out cross-validation. The P value was calcu-
lated by 2,000 random permutations of the class labels. The 45 patients 
of the IFOM validation cohort were labeled as “predict” in BRB Array-
Tools to perform a completely blind classification of the class labels 
(good and poor outcome). TaqMan assay IDs (Applied Biosystems) were 
as follows: NUDCD1-Hs00292614_m1, CXCL6-Hs00237017_m1, E2F1-
Hs00153451_m1, E2F4-Hs00608098_m1, GABPB2-Hs00242573_m1, 
HLA-DQB1-Hs00409790_m1, HOXB7-Hs00270131_m1, HSPG2-
Hs00194179_m1, MCM4-Hs00381533_m1, MCM6-Hs00195504_
m1, MCM7-Hs00428518_m1, RAFTLIN-Hs00412084_m1, RRM2-
Hs00357247_g1, SCGB3A1-Hs00369360_g1, SERPINB5-Hs00184728_m1, 
and SF3B1-Hs00202782_m1.

Statistics. Univariate and multivariate analyses were performed using the 
Nominal Logistic Regression tool within JMP IN software (version 5.1; 
SAS). The P values were calculated with the likelihood-ratio χ2 test. Kaplan-
Meier survival curves were generated using JMP IN version 5.1 and were 
based on the diagonal linear discriminant analysis classification results. 
Kaplan-Meier associated P values were computed with the log-rank test.  
P values of less than or equal to 0.05 were considered significant.
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