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Multiple myeloma is a monoclonal tumor of plasma cells, and its development is preceded by a premalignant tumor 
with which it shares genetic abnormalities, including universal dysregulation of the cyclin D/retinoblastoma (cyclin 
D/RB) pathway. A complex interaction with the BM microenvironment, characterized by activation of osteoclasts 
and suppression of osteoblasts, leads to lytic bone disease. Intratumor genetic heterogeneity, which occurs in addi-
tion to intertumor heterogeneity, contributes to the rapid emergence of drug resistance in high-risk disease. Despite 
recent therapeutic advances, which have doubled the median survival time, myeloma continues to be a mostly incur-
able disease. Here we review the current understanding of myeloma pathogenesis and insight into new therapeutic 
strategies provided by animal models and genetic screens.

Introduction
Multiple myeloma (MM) is an age-dependent monoclonal tumor 
of BM plasma cells (PCs). MM cells are similar to long-lived, post–
germinal center (post-GC) PCs, and are characterized by strong 
BM dependence, extensive somatic hypermutation (SHM) of Ig 
genes, and absence of IgM expression in all but 1% of tumors (1). 
However, MM cells differ from healthy PCs because they retain the 
potential for a low rate of proliferation (1%–3% of cycling cells). MM 
usually is associated with end-organ damage that can include lytic 
bone lesions, anemia, immunodeficiency, and decreased renal func-
tion (2). It is the second most common hematopoietic malignancy, 
with an incidence of about 20,000 per year in the United States (3). 
Despite recent therapeutic advances, MM continues to be a mostly 
incurable disease, but the median survival has increased from 3 years 
to over 6 years (4). MM has served as a model for understanding lym-
phoid tumors because it is characterized by the presence of a prema-
lignant precursor tumor and defined disease stages; researchers have 
been able to isolate pure tumor cells at all stages. In addition, the 
study of MM has provided significant knowledge about the critical 
role of the BM microenvironment in hematopoietic malignancy (5).

Monoclonal gammopathy of undetermined significance 
is a common premalignant tumor that precedes MM
Monoclonal gammopathy of undetermined significance (MGUS) 
has a prevalence of 4% in Caucasians over the age of 50 (6, 7). It can 
be subclassified as lymphoid (15%) or PC (85%) MGUS, which can 
progress sporadically at average rates of 1% per year to chronic lym-
phocytic leukemia, lymphoma, lymphoplasmacytoma, or Walden-
strom’s macroglobulinemia, and MM, respectively (8). Lymphoid 
MGUS and PC MGUS can be distinguished by morphology, but 
more frequently clinicians use an imperfect method based on the 
type of monoclonal Ig (mIg detected in serum or urine: mostly IgM 
for lymphoid MGUS and mostly non-IgM (including Ig light chain 
only; ref. 6) for PC MGUS. MGUS is distinguished clinically from 
MM by having no detectable end-organ damage, a serum mIg of less 
than 3 g/dl, and a BM PC content less than 10% of mononuclear 
cells (but BM biopsies are not done routinely on these patients) (9). 

Although MGUS typically is asymptomatic, some patients develop 
primary amyloidosis as a result of the accumulation of pathologi-
cal mIg light chain deposits in various tissues (2, 10). Most — if not 
all — symptomatic MM tumors are preceded by MGUS (11, 12). 
Smoldering MM (SMM) also has no detectable end-organ damage, 
but differs from MGUS by having a serum mIg higher than 3 g/dl 
or a BM PC content of more than 10% and an average rate of pro-
gression to symptomatic MM of 10% per year. Currently there are 
no tests that measure phenotypic or genotypic markers on tumor 
cells that predict progression (8). However, two models based on 
serum and flow cytometric tests stratify patients into groups that 
progress at yearly rates for MGUS and SMM, respectively, of 0.3% 
to 12% and 0.8% to 29% (8, 13–15). These models are being used to 
select high-risk SMM patients for clinical trials (16, 17).

An abnormal immunophenotype distinguishes healthy 
PCs from tumor cells
Healthy BM PCs are CD38+CD138+CD19+CD45+CD56–. Although 
MGUS, SMM, and MM tumor cells also are CD38+CD138+, 90% 
are CD19–, 99% are CD45– or CD45lo, and 70% are CD56+ (14, 18). 
Perhaps the normal cell that is the target of transformation has this 
abnormal immunophenotype, but no one has identified a normal 
BM or primary lymphoid tissue cell with this phenotype. Alternative-
ly, it is possible that transformation activates an epigenetic program 
that includes the changes in expression of these surface antigens. 
Despite our inability to explain the abnormal immunophenotype, 
it provides a useful assay for distinguishing tumor and healthy PCs.

The phenotype of the MM stem/tumor-propagating cell
Unlike CD38– or CD138– cells, CD138+ or CD38+ MM cells can pro-
liferate and induce lytic bone lesions when transplanted into ecto-
pic bone in SCID-hu or SCID-rab immunodeficient mouse models 
(19). This suggests that the tumor-propagating cell has a PC phe-
notype, with the caveat that it is not possible to serially transplant 
the cells more than a few cycles. However, recently it was shown that 
CD138+ but not CD138– cells from two PC leukemia (PCL) tumors 
could be serially cloned in vitro when cytokines (IL-6 and IGF-1) 
were included in the media (20). By contrast, others have reported 
that CD38–CD19+CD27+ cells, but not CD38+ or CD138+ cells, can 
form in vitro clones or in vivo tumors in immunodeficient NOD/
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SCID mice that give rise to CD138+ cells (21, 22). This suggests that 
there is a tumor-propagating cell with a B cell phenotype, although 
these experiments have not shown that the in vitro clones or in vivo 
tumors share both the clonotype and the genomic abnormalities 
that are present in the bulk of the corresponding MM tumor cells 
(23). We conclude that tumor-propagating cells have a PC pheno-
type, although it is unknown what fraction of MM tumor cells is 
capable of replication. However, it remains possible that tumor cells 
with a B cell phenotype might contribute to progression of MGUS 
to MM, to tumor propagation and progression, or to relapse after 
an apparently complete remission.

Symptomatic MM stages
Progression of symptomatic MM is associated with expanding 
BM tumor mass and increasingly severe organ impairment or 
symptoms (2). Despite BM dependence, sometimes the tumor 
extends to extramedullary locations, such as spleen, liver, and 
extracellular spaces. Extramedullary MM (EMM) typically is a 
more aggressive tumor that sometimes is associated with pri-
mary or secondary PCL, depending on whether a preceding 
intramedullary MM was recognized. More than 60 human MM 
cell lines (HMCLs), which provide a renewable repository of 
most oncogenic events involved in initiation and progression of 
the corresponding MM tumor, have been generated, but mostly 
from EMM tumors (24, 25).

A critical but complex role for the BM 
microenvironment in MM
Similar to long-lived PCs, MGUS and MM cells are dependent on 
the BM microenvironment, which includes the extracellular matrix 
and many kinds of cells, e.g., stromal cells, osteoclasts, osteoblasts, 

immune cells (T lymphocytes, dendritic cells), other hematopoi-
etic cells and their precursors, and vascular endothelial cells (refs. 
1, 26, 27; Figure 1). Reciprocal positive and negative interactions 
among these cells are mediated by a variety of adhesion molecules, 
cytokines, and receptors. Additional stimuli such as hypoxia result 
in activation of HIF-1α and secretion of VEGF (28). For MM, there 
are several biological phenomena that are affected by these tumor-
host interactions, including homing to BM; spread to secondary 
BM sites by the bloodstream; generation of many paracrine factors 
that are involved in the survival, differentiation, and proliferation 
of tumor cells (most notably IL-6, IGF-1, and APRIL); angiogen-
esis; osteoclastogenesis; inhibition of osteogenesis; enhanced resis-
tance to chemotherapeutic agents; humoral and cellular immu-
nodeficiency; and anemia. Many of these tumor-host interactions 
(e.g., homing and differentiation/survival) appear to be qualita-
tively similar for PC and MM tumor cells, whereas the altered com-
position of the BM microenvironment represents a pathological 
response to the MGUS and MM tumor cells. Several therapies 
(such as immunomodulators and proteasome inhibitors) might 
target not only the tumor cell but also its interaction with the BM 
microenvironment. Identifying other therapies directly targeting 
the microenvironment or its interaction with MM tumor cells is 
an active area of investigation (29, 30).

Seven primary IgH translocations are shared by MM and 
MGUS tumors
There are three primary IgH translocation groups that involve the 
cyclin d (CCND) family, the MAF family, and Wolf-Hirschhorn 
syndrome candidate 1/FGFR3 (MMSET/FGFR3) genes (Table 1 
and refs. 8, 31). These mostly balanced translocations position an 
oncogene under control of the IgH intronic (Emu) and/or 3′ IgH 

Figure 1
Interactions of MM tumor cells with the BM 
microenvironment. Five kinds of cells in the 
BM microenvironment are depicted, as well 
as a few of the complex interactions among 
these cells and MM cells. Some of the criti-
cal survival and growth factors, such as 
IL-6, are made by more than one kind of BM 
cell. External stimuli, such as hypoxia and 
internal signals resulting from dysregulated 
MYC, stimulate HIF-1α and VEGF secre-
tion, which in turn stimulate endothelial cells 
to secrete IGF-1. The hallmark uncoupling of 
bone remodeling is partially explained by an 
increase in osteoclast activity (mediated by 
RANKL/RANK interactions, decreased osteo-
protegerin (OPG), and increased MIP-1α) and 
a decrease in osteoblast activity (mediated 
by DKK1 and IL-3). The resultant increase 
in osteoclast activity stimulates the survival 
and growth of MM cells, at least partially by 
increased IL-6. Potential therapeutic agents 
that directly inhibit some of these interactions 
include bisphosphonates (which inhibit osteo-
clast function), anti-RANKL antibody, anti-
DKK1 antibody, and exogenous OPG.
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(3′E) enhancers. As the breakpoints usually occur near or within 
IgH switch regions, but sometimes near VDJ sequences, it seems 
likely that the translocations are related to errors in class switch 
recombination or SHM, as normal B cells pass through the GC (1). 
In rare instances, tumors may have translocations involving two 
of the primary translocation groups, suggesting that there can be 
some complementation (25).

It is thought that CCND translocations only dysregulate expres-
sion of a CCND gene. In contrast, MAF translocations dysregulate 
expression of a MAF transcription factor that causes increased 
expression of many genes, including CCND2 and adhesion molecules 
that are thought to enhance the ability of the tumor cell to interact 
with the BM microenvironment (32–34). The contributions of the 
two genes dysregulated by t(4;14) remain controversial. MMSET is 
a chromatin-remodeling factor that is overexpressed in all tumors 
with a t(4;14), whereas about 20% of tumors lack der(14) and FGFR3 
expression. The rare acquisition of FGFR3-activating mutations 
during progression confirms a role for FGFR3 in MM pathogenesis. 
Although an activated mutant FGFR3 can be oncogenic, it recently 
was shown that wild-type FGFR3 (as is found in most t[4;14] tumors) 
can also contribute to B cell oncogenesis (35). It remains to be deter-
mined whether FGFR3 is critical early in pathogenesis but becomes 
dispensable during progression of t(4;14) MM. Preclinical studies 
suggest that tyrosine kinase inhibitors are active only against t(4;14) 
HMCL with activating mutations of FGFR3, whereas anti-FGFR3 
monoclonal antibodies that inhibit FGFR3 signaling but also elicit 
antibody-dependent, cell-mediated cytotoxicity are active against 
HMCLs expressing wild-type FGFR3 (36, 37). Despite an appar-
ently indispensable role in t(4;14) MM, it remains to be determined 
how MMSET, which sometimes has aminoterminal truncations 
caused by the translocation, contributes to MM pathogenesis. How-

ever, MMSET is a histone methyltransferase for H4K20 and, when 
overexpressed, results in a global increase in H3K36 methylation 
and a decrease in H3K27 methylation, which might explain some of 
the many changes in gene expression associated with t(4;14) tumors 
(32, 38, 39). In addition, it was recently determined that MMSET 
has a role in DNA repair (40). Importantly, loss of MMSET expres-
sion alters adhesion, suppresses growth, and results in apoptosis of 
HMCLs, suggesting that it is an attractive therapeutic target (39).

Chromosome content is associated with different 
oncogenic pathways
Nearly half of MGUS and MM tumors are hyperdiploid (HRD), 
with 48–75 chromosomes (most have 49–56), including extra cop-
ies of three or more odd-numbered chromosomes (chromosomes 
3, 5, 7, 9, 11, 15, 19, or 21; ref. 31). Non-HRD (NHRD) tumors 
have fewer than 48 and/or more than 75 chromosomes. Strikingly, 
only about 10% of HRD tumors have a primary IgH translocation, 
whereas about 70% NHRD tumors have an IgH translocation. 
Tumors with a t(11;14) translocation may represent a distinct cat-
egory of NHRD tumors, as they often are diploid or pseudodip-
loid. Curiously, EMM tumors and HMCLs nearly always have a 
NHRD genotype, suggesting that HRD tumors are more stromal 
cell dependent than NHRD tumors (41, 42). Although it has been 
proposed that NHRD and HRD tumors represent different path-
ways of pathogenesis (31, 43), the timing, mechanism, and molec-
ular consequences of hyperdiploidy are unknown.

Universal CCND dysregulation in MGUS and MM tumors
Despite a low proliferation index, there is increased expression of 
a CCND gene in virtually all MGUS and MM tumors (Figure 2 and 
refs. 31, 32). Firstly, this is related to direct or indirect dysregula-

Table 1
Comparison of different molecular classifications in MM

Group TC Gene PercentC UAMS HOVON-GMMGA Comment
Cyclin D translocation 11q13B CCND1 15 CD1, CD2 CD1, CD2 Divergent clinical outcomes for CD1 and CD2
 6p21B CCND3 2 CD1, CD2 CD1, CD2 Divergent clinical outcomes for CD1 and CD2
 12p13B CCND2 <1 CD1, CD2 CD1, CD2 Divergent clinical outcomes for CD1 and CD2
MMSET translocation 4p16 MMSET 15 MS MS FGFR3 expressed in 75% of MMs
MAF translocation 16q23 MAF 5 MF MF Strong transcriptional profile with  
      expression of ITGB7
 20q12 MAFB 2 MF MF Strong transcriptional profile with  
      expression of ITGB7
 8q24 MAFA <1 MF MF Strong transcriptional profile with  
      expression of ITGB7
HRD D1 CCND1 33 HY HY, CD-1, NF-κB,  NF-κB target gene expression  
     CTA, PRL3 may be ligand dependent or may  
      result from activating mutations
 D1+D2 CCND1,  7 PR PR, CTA D1+D2 might occasionally be a progression  
  CCND2    from D1; PR contains 5%–10% of each  
      TC group, with the exception of D1+D2 and  
      None (contains >40% of each)
Other NoneD No CCND 2 PR PR CTA Biallelic RB deletion frequent in None
 D2 CCND2 18 PR LB LB CTA PRL3 PRL3 lacks poor risk features and is  
      enriched for ISS 1E patients

AHOVON-GMMG indicates Dutch-Belgian Cooperative Trial group for Hematology-Oncology and German Multiple Myeloma Group. BThe 11q13 and 6p21 
are combined into one TC group; the 12p13 is not usually identified and thus is included in the D2 group. PR, proliferation. CPercent refers to the percent of 
MM patients in each group. DNone refers to a group of patients with no CCND expression. EISS 1, International Staging System (ISS) 1.
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tion, respectively, in tumors with CCND and MAF group trans-
locations. Secondly, although the mechanism is not understood, 
MMSET/FGFR3 tumors also express moderately increased levels 
of CCND2. In addition, although normal B cells and PCs do not 
express CCND1, about two-thirds of MGUS or MM tumors with-
out a primary IgH translocation (virtually all are HRD) express 
CCND1, and sometimes CCND2, in a biallelic manner. Notably, 
an extra copy of chromosome 11 is found mainly in HRD tumors 
that express CCND1. Most of the remaining tumors (about 40% 
of which are HRD) express increased CCND2 compared with nor-
mal PCs. Finally, the infrequent (<5%) tumors that do not express 
increased levels of a CCND gene often have inactivated RB1, obviat-
ing the need for CCND to stimulate proliferation (31).

Additional oncogenic events in MGUS and MM tumors
Chromosome 13 deletion. A recent study concludes that chromosome 
13 deletion can be an early event in MGUS (e.g., in MAF, MMSET 
tumors) or a progression event (e.g., in t[11;14] tumors) (44). 
The pathogenic effect of this chromosome deletion is unknown, 
though it is possible it may lead to progression due to haploinsuf-
ficiency of RB1 (31).

Activating mutations of RAS and BRAF. The prevalence of activating 
NRAS or KRAS mutations is about 15%–18% each in newly diag-
nosed and relapsed MM tumors (31, 45) but is substantially higher 
in tumors that express CCND1 compared with tumors that express 
CCND2. For MGUS tumors, the prevalence of NRAS mutations 
is 7%, but KRAS mutations have not been described (8). This is 
consistent with increasing evidence that NRAS and KRAS muta-
tions have overlapping but non-identical effects (46), and with 
the hypothesis that KRAS mutations provide a molecular mark of 
the transition of MGUS to MM (23, 47). MM tumors depend on 
the continued expression of activated but not wild-type RAS (48). 
Recently, BRAF mutations were described in 4% of MM tumors, 
suggesting a possible role for BRAF inhibitors in these cases (49).

MYC dysregulation. There is increased expression of c-MYC in most 
newly diagnosed MM tumors compared with MGUS tumors (50). 
Recently it was shown that sporadic activation of a MYC transgene 
in GC B cells in an MGUS-prone mouse strain leads to the universal 
development of MM tumors (51, 52). Hence, increased MYC expres-
sion seems to be responsible for progression from MGUS to MM. 
Complex translocations involving MYC (c-MYC>>N-MYC>L-MYC)  

appear to be secondary progression events that often do not involve 
Ig loci (53). They are rare or absent in MGUS but occur in 15% of 
newly diagnosed tumors, 50% of advanced tumors, and 90% of 
HMCLs (25, 54). A recent report suggested that a small molecule 
inhibitor of BRD4 can inhibit MYC RNA expression in MM (55).

Mutations that activate the NF-κB pathway. Extrinsic ligands (APRIL 
and BAFF) produced by BM stromal cells provide critical survival 
signals to long-lived PCs by stimulating TACI, BCMA, and BAFF 
receptors to activate the NF-κB pathways (56). Most MGUS and 
MM tumors highly express NF-κB target genes, suggesting a con-
tinued role of extrinsic signaling in PC tumors (57, 58). Activat-
ing mutations in positive regulators and inactivating mutations 
in negative regulators of the NF-κB pathway have been identified 
in at least 20% of untreated MM tumors and approximately 50% 
of HMCLs, rendering the cells less dependent on ligand-mediated 
NF-κB activation (49). Small molecules that inhibit extrinsic signal-
ing (including TACI.Fc, IKKβ, and NIK [MAP3K14]) are being devel-
oped as potential therapeutic agents (59, 60). There is also some 
evidence suggesting that cells addicted to constitutive NF-κB acti-
vation may be particularly sensitive to proteasome inhibition (58).

Chromosome 17p loss and abnormalities of TP53. Deletions that 
include the TP53 locus occur in approximately 10% of untreated 
MM tumors, and the prevalence increases with disease stage (31, 
42). TP53 mutations were present in 37% of untreated MM tumors 
with del17p, but not in patients without del17p (61). It remains to 
be determined whether the poor prognosis associated with mono-
allelic del17p but no TP53 mutation is due to haploinsufficiency 
or to predisposition to complete inactivation of TP53. Recently, 
decreased expression of microRNAs miR199, miR192, and miR215 
in MM was reported to increase MDM2, an inhibitor of TP53 (62).

Gain of chromosome 1q and loss of chromosome 1p. These genomic events 
frequently occur together in MM, and each is associated with a poor 
prognosis (31, 63). The relevant genes on 1q are unclear at this time. 
By contrast, there are potential targets on two regions of 1p that are 
associated with a poor prognosis: CDKN2C (p18INK4c) at 1p32.3 and 
FAM46C at 1p12 (64, 65). Homozygous deletion of CDKN2C, which 
is present in about 30% of HMCL and about 5% of untreated MM 
tumors, is associated with increased proliferation and a poor prog-
nosis, whereas monoallelic deletion is not. Mutations of FAM46C — 
often with hemizygous deletion — were identified in 3.4% and 13% of 
MM tumors in two studies, and in 25% of 16 HMCL (49, 64).

Figure 2
Early and late disruption of the RB pathway. 
The early dysregulation of a cyclin D gene 
provides the basis for the TC classification 
(see text for details). Yet most MGUSs and 
most MM tumors are minimally proliferative, 
perhaps a result of the inhibitory effects of 
p18INK4c, since p16INK4a usually is not 
expressed. Increased proliferation at late 
stages of progress sometimes is associated 
with inactivation of p18 or RB1, but most pro-
liferative tumors have a paradoxically high 
level of p18INK4c expression and normal 
levels of RB1.
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Other pathogenic events. Secondary Ig translocations, including 
most IgK and IgL translocations and IgH translocations not involv-
ing one of the seven primary partners, can occur at all stages of dis-
ease, and with a similar frequency in HRD and NHRD tumors, but 
apart from MYC, few partner loci have been identified (25). Other 
genomic rearrangements are frequent, but only a few specific target 
genes have been identified (63, 66, 67). Changes in DNA methyla-
tion are frequent, with one study suggesting that a marked increase 
in hypomethylation is associated with the MGUS-to-MM transi-
tion (68), whereas a second study suggests only a small increase in 
hypomethylation for MM compared with MGUS (69). Mutations 
in seven genes regulating RNA metabolism, protein translation, 
and homeostasis were identified in 16 of 38 patients (49). In addi-
tion to previous studies implicating roles for MMSET and KDM6A 
(UTX), genomic sequencing studies found that other histone-
modifying enzymes are frequent targets of mutation, although the 
epigenetic consequences are unknown (49). Similarly, changes in 
microRNA expression at different stages have been identified, but 
more extensive studies are needed (62, 70).

Model for molecular pathogenesis of MGUS and MM
The pathogenesis of MGUS and MM can be considered as occur-
ring in three phases (Figure 3 and refs. 8, 34). Early, partially over-
lapping genetic events common to MGUS and MM include at a 
minimum primary IgH translocations, hyperdiploidy, and del13 
that lead directly or indirectly to dysregulation of a CCND gene. 

Second, the transition from MGUS to MM is associated with 
increased MYC expression and sometimes KRAS mutations, but 
can also include del13 in t(11;14) tumors. Finally, further progres-
sion of the MM tumor seems to be associated with other events. 
For example, increased proliferation and genomic instability, and 
decreased dependence on the BM microenvironment, sometimes 
including extramedullary spread of disease, can be associated with 
late MYC rearrangements that often involve an Ig locus, activating 
mutations of the NF-κB pathway, deletion or mutation of TP53, 
and inactivation of p18INK4c or RB1.

Clinical implications of molecular classifications
The presence of primary IgH translocations and the universal 
overexpression of CCND genes led to the development of the trans-
locations and cyclin D (TC) classification that is focused mainly on 
early events common to MGUS and MM, and therefore is applica-
ble to the classification of both MGUS and MM tumors (Table 1). 
Unsupervised analyses of microarray gene expression profiling (GEP) 
have identified additional MM tumor groups with shared patterns 
of gene expression (71, 72) that highlight other important second-
ary events that can occur in each subtype of MM: proliferation and 
expression of NF-κB target genes, cancer-testis antigens (CTAs), 
and the phosphatase PTP4A3/PRL3. The University of Arkansas for 
Medical Science (UAMS) CD1 and CD2 classification groups rep-
resent subgroups of patients with t(11;14) and t(6;14) tumors, with 
the former characterized by arginosuccinate synthetase 1 expression 

Figure 3
Model for molecular pathogenesis of MGUS and MM. The initial transition (TR1) to a recognizable tumor involves two mostly non-overlapping 
pathways (IgH translocations versus multiple trisomies) that include primary events associated with dysregulated cyclin D expression in MGUS 
and MM. The transition from MGUS to MM (TR2) is associated with increased MYC expression and sometimes with activating mutations of K-RAS 
or chromosome 13 deletion. Early and late progression events for symptomatic MM tumors are shown.
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and the later by expression of B cell antigens (CD20, VPREB, CD79A). 
Interestingly, CD1 and CD2 groups identify patients with markedly 
different clinical outcomes. Of the various genetic events in MM, the 
one most important clinically is the t(4;14) chromosome transloca-
tion. It is associated with a poor prognosis in patients treated with 
alkylating agents, immunomodulatory drugs (IMiDs), and bortezo-
mib. However, there is a clear survival advantage to the upfront use 
of bortezomib versus control in these patients (73–76), with a sug-
gestion that prolonged use totally overcomes the adverse prognosis. 
Numerous randomized, controlled clinical trials of IMiDs in the 
treatment of thousands of MM patients have been performed, with 
several studies showing improvements in overall survival (OS) for the 
cohort receiving IMiDs relative to the control group. Unfortunately, 
we do not know which molecular subgroups received the maximum 
benefit from IMiDs versus those that received no benefit. From these 
studies there are a few reports of the effects of IMiDs on the survival 
of a molecular subgroup (Table 2). In summary, it appears that tha-
lidomide is no better and often is even worse than placebo in patients 
with high-risk genetic features (e.g., t[4;14], t[14;16], and del17p). 
Further studies are urgently required to define the utility and safety 
of IMiDs in the various molecular subtypes of MM.

The MF molecular subgroup, t(14;16), and t(14;20) tumors have 
each individually been associated with a poor prognosis. In addi-
tion, del17p is universally associated with poor prognosis. Finally, 
patients defined as high risk by a GEP index of proliferation or 
other GEP-defined risk scores (which all appear to discriminate 
prognosis equally in an independent dataset) do poorly (77). Unlike 
the t(4;14) group, for these latter subgroups neither bortezomib 
nor any other intervention has been shown to offer a survival 
advantage, although the data are unfortunately very limited. These 
patients should be considered for clinical trials exploring innova-
tive approaches. Recently a high level of intraclonal tumor hetero-
geneity has been described in patients with high-risk MM (67), 
associated in one case with alternating clonal dominance under 
therapeutic selective pressure; these observations have impor-
tant clinical implications. The findings suggest a competition 
between subclones for limited resources and raise the possibility 
that early, suboptimal treatment may eradicate the “good,” drug-
sensitive clone, making room for the “bad,” drug-resistant clone to 
expand. They support the use of aggressive multidrug combination 

approaches for high-risk disease with unstable genomes and clonal 
heterogeneity and sequential one- or two-drug approaches for low-
risk disease with stable genomes and lacking clonal heterogeneity.

Challenges for the future
Despite marked progress in understanding the molecular patho-
genesis of MM, many important questions remain unanswered. 
What are the phenotypic and genotypic markers that distinguish 
MGUS, SMM, and MM, and can they be used to predict progres-
sion or suggest therapeutic strategies that will prevent or delay 
progression? What is the basis for the immunophenotype that dis-
tinguishes healthy PCs from tumor PCs? What are the molecular 
mechanisms and oncogenic consequences of hyperdiploidy? Will 
studies on cell lines and current animal models provide an adequate 
way of determining the biological effects — and value as therapeutic 
targets — of known genetic and epigenetic abnormalities? How can 
we achieve a more profound understanding of the critical interac-
tions of the BM microenvironment with healthy and tumor PCs? 
Finally, do current therapeutic regimens show differential activity 
for tumors with different genetic and phenotypic abnormalities?

Developing new therapeutic strategies is critical. One popular 
notion is to convert MM to a premalignant MGUS tumor if a com-
plete elimination of MM tumor cells cannot be achieved. However, 
it will be a challenge to figure out how to effectively monitor this 
outcome, given our poor understanding of intrinsic differences 
between MM and MGUS tumors. Simultaneous therapeutic tar-
geting of several genetic and/or epigenetic abnormalities present 
in individual MM tumors is another attractive concept. But it 
remains unclear whether initiating or early oncogenic abnormali-
ties are more effective targets than secondary oncogenic abnor-
malities. Alternatively, it may be possible to target addiction of the 
tumor cell to the PC phenotype, as illustrated by the dependence of 
survival of MM cell lines on expression of IRF4 (78). Finally, given 
that the BM seems to be altered during tumor progression, the 
possibility of targeting the microenvironment and/or its interac-
tion with tumor cells (including possible enhancement of immune 
responses) seems attractive, but currently our limited understand-
ing of these interactions hampers this approach. However, the 
development of an orthotopic, immunocompetent, genetically 
engineered murine model is a crucial step forward (51, 52).

Table 2
Survival of high-risk genetic subgroups in randomized, controlled clinical trials in patients with untreated MM

Genetic lesionA Arm 1 n/Arm 2 n Endpoint Arm 1B Arm 2B Arm 1 OSC Arm 2 OSC Reference
t(4;14)  33/31 3-yr OS V-A-D/HDM/Thal Bor-A-D/HDM/Bor 44% 66% 76
t(4;14) 98/106 4-yr OS V-A-D Bor-D 32% 63% 74
t(4;14) 21/23 2-yr OS Thal-TT2 Placebo-TT2 67% 87% 75
t(4;14) 21/29 2-yr OS Thal-TT2 Bor-TT3 67% 97% 75
del17p 39/19 3-yr OS V-A-D/HDM/Thal Bor-A-D/HDM/Bor 17% 69% 76
del17p 119/54 4-yr OS V-A-D Bor-D 36% 50% 74
NHRD 92D 3-yr OS Thal-D-Bor Mel-P-Bor 53% 72% 79
Unfav. FISH 152/141 3-yr OS Thal-D-Cyclo V-A-D-Cyclo 58% 56% 80
Unfav. FISH 96/90 3-yr OS Thal-D-Cyclo Placebo-P-Mel 34% 26% 81
Unfav. FISH 99/98 3-yr OS Thal maint Placebo maint 45% 69% 82

ANHRD status determined by flow cytometry. Unfavorable (Unfav.) FISH includes any of the following: t(4;14), t(14;16), t(14;20), gain(1q), del(1p32), or 
del(17p). BRandomized drugs in each arm are shown in bold. COSs that are significantly different from control are shown in bold. A, adriamycin; Bor, bortezo-
mib; Cyclo, cyclophosphamide; D, dexamethasone; HDM, high-dose intravenous melphalan; maint, maintenance (implies combination and/or sequential ther-
apies); Mel, low-dose oral melphalan; P, prednisone; Thal, thalidomide; TT2, total therapy 2 (an intense multi-drug combination induction, tandem transplant, 
and randomization to thalidomide or placebo); TT3, total therapy 3 (similar to TT2 but includes bortezomib). DNumber shown refers to the total population.
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