[HTML][HTML] Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function

Y Cheng, M Wang, Y Yu, J Lawson… - The Journal of …, 2006 - Am Soc Clin Investig
Y Cheng, M Wang, Y Yu, J Lawson, CD Funk, GA FitzGerald
The Journal of clinical investigation, 2006Am Soc Clin Investig
We investigated the mechanisms by which inhibitors of prostaglandin G/H synthase-2
(PGHS-2; known colloquially as COX-2) increase the incidence of myocardial infarction and
stroke. These inhibitors are believed to exert both their beneficial and their adverse effects
by suppression of PGHS-2–derived prostacyclin (PGI2) and PGE2. Therefore, the challenge
remains to identify a mechanism whereby PGI2 and PGE2 expression can be suppressed
while avoiding adverse cardiovascular events. Here, selective inhibition, knockout, or …
We investigated the mechanisms by which inhibitors of prostaglandin G/H synthase-2 (PGHS-2; known colloquially as COX-2) increase the incidence of myocardial infarction and stroke. These inhibitors are believed to exert both their beneficial and their adverse effects by suppression of PGHS-2–derived prostacyclin (PGI2) and PGE2. Therefore, the challenge remains to identify a mechanism whereby PGI2 and PGE2 expression can be suppressed while avoiding adverse cardiovascular events. Here, selective inhibition, knockout, or mutation of PGHS-2, or deletion of the receptor for PGHS-2–derived PGI2, was shown to accelerate thrombogenesis and elevate blood pressure in mice. These responses were attenuated by COX-1 knock down, which mimics the beneficial effects of low-dose aspirin. PGE2 biosynthesis is catalyzed by the coordinate actions of COX enzymes and microsomal PGE synthase-1 (mPGES-1). We show that deletion of mPGES-1 depressed PGE2 expression, augmented PGI2 expression, and had no effect on thromboxane biosynthesis in vivo. Most importantly, mPGES-1 deletion affected neither thrombogenesis nor blood pressure. These results suggest that inhibitors of mPGES-1 may retain their antiinflammatory efficacy by depressing PGE2, while avoiding the adverse cardiovascular consequences associated with PGHS-2–mediated PGI2 suppression.
The Journal of Clinical Investigation