Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism

UI Scholl, G Goh, G Stölting, RC De Oliveira, M Choi… - Nature …, 2013 - nature.com
UI Scholl, G Goh, G Stölting, RC De Oliveira, M Choi, JD Overton, AL Fonseca, R Korah…
Nature genetics, 2013nature.com
Adrenal aldosterone-producing adenomas (APAs) constitutively produce the salt-retaining
hormone aldosterone and are a common cause of severe hypertension. Recurrent
mutations in the potassium channel gene KCNJ5 that result in cell depolarization and Ca2+
influx cause∼ 40% of these tumors. We identified 5 somatic mutations (4 altering Gly403
and 1 altering Ile770) in CACNA1D, encoding a voltage-gated calcium channel, among 43
APAs without mutated KCNJ5. The altered residues lie in the S6 segments that line the …
Abstract
Adrenal aldosterone-producing adenomas (APAs) constitutively produce the salt-retaining hormone aldosterone and are a common cause of severe hypertension. Recurrent mutations in the potassium channel gene KCNJ5 that result in cell depolarization and Ca2+ influx cause ∼40% of these tumors. We identified 5 somatic mutations (4 altering Gly403 and 1 altering Ile770) in CACNA1D, encoding a voltage-gated calcium channel, among 43 APAs without mutated KCNJ5. The altered residues lie in the S6 segments that line the channel pore. Both alterations result in channel activation at less depolarized potentials; Gly403 alterations also impair channel inactivation. These effects are inferred to cause increased Ca2+ influx, which is a sufficient stimulus for aldosterone production and cell proliferation in adrenal glomerulosa. We also identified de novo germline mutations at identical positions in two children with a previously undescribed syndrome featuring primary aldosteronism and neuromuscular abnormalities. These findings implicate gain-of-function Ca2+ channel mutations in APAs and primary aldosteronism.
nature.com