Recently published - More

Abstract

Immune nonresponder (INR) HIV-1–infected subjects are characterized by their inability to reconstitute the CD4+ T cell pool after antiretroviral therapy. This is linked to poor clinical outcome. Mechanisms underlying immune reconstitution failure are poorly understood, although, counterintuitively, INRs often have increased frequencies of circulating CD4+ T cells in the cell cycle. While cycling CD4+ T cells from healthy controls and HIV+ patients with restored CD4+ T cell numbers complete cell division in vitro, cycling CD4+ T cells from INRs do not. Here, we show that cells with the phenotype and transcriptional profile of Tregs were enriched among cycling cells in health and in HIV infection. Yet there were diminished frequencies and numbers of Tregs among cycling CD4+ T cells in INRs, and cycling CD4+ T cells from INR subjects displayed transcriptional profiles associated with the impaired development and maintenance of functional Tregs. Flow cytometric assessment of TGF-β activity confirmed the dysfunction of Tregs in INR subjects. Transcriptional profiling and flow cytometry revealed diminished mitochondrial fitness in Tregs among INRs, and cycling Tregs from INRs had low expression of the mitochondrial biogenesis regulators peroxisome proliferator–activated receptor γ coactivator 1-α (PGC1α) and transcription factor A for mitochondria (TFAM). In vitro exposure to IL-15 allowed cells to complete division, restored the expression of PGC1α and TFAM, and regenerated mitochondrial fitness in the cycling Tregs of INRs. Our data suggest that rescuing mitochondrial function could correct the immune dysfunction characteristic of Tregs in HIV-1–infected subjects who fail to restore CD4+ T cells during antiretroviral therapy.

Authors

Souheil-Antoine Younes, Aarthi Talla, Susan Pereira Ribeiro, Evgeniya V. Saidakova, Larisa B. Korolevskaya, Konstantin V. Shmagel, Carey L. Shive, Michael L. Freeman, Soumya Panigrahi, Sophia Zweig, Robert Balderas, Leonid Margolis, Daniel C. Douek, Donald. D. Anthony, Pushpa Pandiyan, Mark Cameron, Scott F. Sieg, Leonard H. Calabrese, Benigno Rodriguez, Michael M. Lederman

×

Abstract

It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn’s disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell–enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell–specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.

Authors

Ta-Chiang Liu, Justin T. Kern, Kelli L. VanDussen, Shanshan Xiong, Gerard E. Kaiko, Craig B. Wilen, Michael W. Rajala, Roberta Caruso, Michael J. Holtzman, Feng Gao, Dermot P.B. McGovern, Gabriel Nunez, Richard D. Head, Thaddeus S. Stappenbeck

×

Abstract

SMAD4 is the only common SMAD in TGF-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, we demonstrated here that selective deletion of Smad4 in NK cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases, reduced murine CMV clearance, as well as impeded NK cell homeostasis and maturation. This was associated with a downregulation of granzyme B (Gzmb), Kit, and Prdm1 in Smad4-deficient NK cells. We further unveiled the mechanism by which SMAD4 promotes Gzmb expression. Gzmb was identified as a direct target of a transcriptional complex formed by SMAD4 and JUNB. A JUNB binding site distinct from that for SMAD4 in the proximal Gzmb promoter was required for transcriptional activation by the SMAD4-JUNB complex. In a Tgfbr2 and Smad4 NK cell–specific double–conditional KO model, SMAD4-mediated events were found to be independent of canonical TGF-β signaling. Our study identifies and mechanistically characterizes unusual functions and pathways for SMAD4 in governing innate immune responses to cancer and viral infection, as well as NK cell development.

Authors

Youwei Wang, Jianhong Chu, Ping Yi, Wejuan Dong, Jennifer Saultz, Yufeng Wang, Hongwei Wang, Steven Scoville, Jianying Zhang, Lai-Chu Wu, Youcai Deng, Xiaoming He, Bethany Mundy-Bosse, Aharon G. Freud, Li-Shu Wang, Michael A. Caligiuri, Jianhua Yu

×

Abstract

The introduction of anti-TNF antibody therapy has changed the course of treatment for Crohn’s disease. However, the fundamental mechanism for the onset of Crohn’s disease is still unknown, and the treatment strategy for this disease remains suboptimal. The assessment of the disease phenotype based on key environmental factors and genetic background may indicate options for the personalized treatment of Crohn’s disease. In this issue of the JCI, Liu et al. show that consumption of tobacco and the mutation of ATG16L1T300A, a prevalent Crohn’s disease susceptibility allele, drive defects in cells at the bottom of the intestinal crypt, the Paneth cells. These factors may provide novel targets for personalized medicine.

Authors

Shigeru Oshima, Mamoru Watanabe

×

Abstract

The stroma of solid tumors can exclude or limit immune infiltration, or lead to the recruitment of tumor-promoting rather than tumor-attacking immune cells. This finding was reported by Jayaprakash et al. in this issue of the JCI, and it was particularly prominent in the hypoxic zones of tumors in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer models. A current clinical goal of immune checkpoint blockade (ICB) is to extend its utility to more patients by converting immunologically “cold” tumors that do not provoke a strong immunological response to “hot” tumors that are invaded by swarms of T cells. When the underlying cause is hypoxia linked, the therapeutic combination of simultaneous targeting of hypoxia and immune checkpoints merits exploration in future clinical trials.

Authors

Paul R. Walker

×

Abstract

In critically ill patients, disruption of intestinal epithelial cell function occurs due to exposure of the epithelium to toxic internal and external inflammatory stimuli, which are key factors that trigger sepsis and multi-organ dysfunction syndrome (MODS). A greater understanding of how trauma and gut failure lead to sepsis and progression to MODS is much needed. In this issue of the JCI, Armacki and colleagues identify mechanisms by which thirty-eight-negative kinase 1 (TNK1) promotes the progression from intestinal apoptosis and gut failure to bacterial translocation, sepsis, and MODS. Moreover, the results of this study suggest TNK1 as a potential therapeutic target to prevent sepsis and MODS.

Authors

QiQi Zhou, G. Nicholas Verne

×

Abstract

Enteroviruses, including subtype EV-A71, infect the brain, liver, heart, and other organs, causing a myriad of human diseases. This spectrum of disease is thought to be due, in part, to differential binding to host cells, and additional knowledge of enterovirus cell entry is essential for therapeutic development. In this issue of the JCI, Yeung et al. provide evidence of a novel EV-A71 entry factor, a host-produced tryptophan tRNA synthetase (hWARS), that facilitates entry of multiple subtypes of enteroviruses. hWARS is a cytoplasmic enzyme that is essential for translation but also upregulated and secreted during inflammatory processes. The results of this study support the notion of secreted hWARS as an unconventional virus entry factor that raises interesting questions about mechanisms by which inflammation and a tRNA synthetase facilitate viral pathogenesis.

Authors

Stanley Perlman, Tom Gallagher

×

Abstract

Despite the success of immune checkpoint blockade against melanoma, many “cold” tumors like prostate cancer remain unresponsive. We found that hypoxic zones were prevalent across preclinical prostate cancer and resisted T cell infiltration even in the context of CTLA-4 and PD-1 blockade. We demonstrated that the hypoxia-activated prodrug TH-302 reduces or eliminates hypoxia in these tumors. Combination therapy with this hypoxia-prodrug and checkpoint blockade cooperated to cure more than 80% of tumors in the transgenic adenocarcinoma of the mouse prostate–derived (TRAMP-derived) TRAMP-C2 model. Immunofluorescence imaging showed that TH-302 drives an influx of T cells into hypoxic zones, which were expanded by checkpoint blockade. Further, combination therapy reduced myeloid-derived suppressor cell density by more than 50%, and durably reduced the capacity of the tumor to replenish the granulocytic subset. Spontaneous prostate tumors in TRAMP transgenic mice, which completely resist checkpoint blockade, showed minimal adenocarcinoma tumor burden at 36 weeks of age and no evidence of neuroendocrine tumors with combination therapy. Survival of Pb-Cre4, Ptenpc–/–Smad4pc–/– mice with aggressive prostate adenocarcinoma was also significantly extended by this combination of hypoxia-prodrug and checkpoint blockade. Hypoxia disruption and T cell checkpoint blockade may sensitize some of the most therapeutically resistant cancers to immunotherapy.

Authors

Priyamvada Jayaprakash, Midan Ai, Arthur Liu, Pratha Budhani, Todd Bartkowiak, Jie Sheng, Casey Ager, Courtney Nicholas, Ashvin R. Jaiswal, Yanqiu Sun, Krishna Shah, Sadhana Balasubramanyam, Nan Li, Guocan Wang, Jing Ning, Anna Zal, Tomasz Zal, Michael A. Curran

×

Abstract

Hearing loss is a significant public health concern, affecting over 250 million people worldwide. Both genetic and environmental etiologies are linked to hearing loss, but in many cases the underlying cellular pathophysiology is not well understood, highlighting the importance of further discovery. We found that inactivation of the gene Tmtc4 (transmembrane and tetratricopeptide repeat 4), which was broadly expressed in the mouse cochlea, caused acquired hearing loss in mice. Our data showed Tmtc4 enriched in the endoplasmic reticulum, and that it functioned by regulating Ca2+ dynamics and the unfolded protein response (UPR). Given this genetic linkage of the UPR to hearing loss, we demonstrated a direct link between the more common noise-induced hearing loss (NIHL) and the UPR. These experiments suggested a novel approach to treatment. We demonstrated that the small-molecule UPR and stress response modulator ISRIB (integrated stress response inhibitor), which activates eIF2B, prevented NIHL in a mouse model. Moreover, in an inverse genetic complementation approach, we demonstrated that mice with homozygous inactivation of both Tmtc4 and Chop had less hearing loss than knockout of Tmtc4 alone. This study implicated a novel mechanism for hearing impairment, highlighting a potential treatment approach for a broad range of human hearing loss disorders.

Authors

Jiang Li, Omar Akil, Stephanie L. Rouse, Conor W. McLaughlin, Ian R. Matthews, Lawrence R. Lustig, Dylan K. Chan, Elliott H. Sherr

×

Abstract

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.

Authors

Milena Armacki, Anna Katharina Trugenberger, Ann K. Ellwanger, Tim Eiseler, Christiane Schwerdt, Lucas Bettac, Dominik Langgartner, Ninel Azoitei, Rebecca Halbgebauer, Rüdiger Groß, Tabea Barth, André Lechel, Benjamin M. Walter, Johann M. Kraus, Christoph Wiegreffe, Johannes Grimm, Annika Scheffold, Marlon R. Schneider, Kenneth Peuker, Sebastian Zeißig, Stefan Britsch, Stefan Rose-John, Sabine Vettorazzi, Eckhart Wolf, Andrea Tannapfel, Konrad Steinestel, Stefan O. Reber, Paul Walther, Hans A. Kestler, Peter Radermacher, Thomas F.E. Barth, Markus Huber-Lang, Alexander Kleger, Thomas Seufferlein

×

Abstract

Enterovirus A71 (EV-A71) receptors that have been identified to date cannot fully explain the pathogenesis of EV-A71, which is an important global cause of hand, foot, and mouth disease and life-threatening encephalitis. We identified an IFN-γ–inducible EV-A71 cellular entry factor, human tryptophanyl-tRNA synthetase (hWARS), using genome-wide RNAi library screening. The importance of hWARS in mediating virus entry and infectivity was confirmed by virus attachment, in vitro pulldown, antibody/antigen blocking, and CRISPR/Cas9-mediated deletion. Hyperexpression and plasma membrane translocation of hWARS were observed in IFN-γ–treated semipermissive (human neuronal NT2) and cDNA-transfected nonpermissive (mouse fibroblast L929) cells, resulting in their sensitization to EV-A71 infection. Our hWARS-transduced mouse infection model showed pathological changes similar to those seen in patients with severe EV-A71 infection. Expression of hWARS is also required for productive infection by other human enteroviruses, including the clinically important coxsackievirus A16 (CV-A16) and EV-D68. This is the first report to our knowledge on the discovery of an entry factor, hWARS, that can be induced by IFN-γ for EV-A71 infection. Given that we detected high levels of IFN-γ in patients with severe EV-A71 infection, our findings extend the knowledge of the pathogenicity of EV-A71 in relation to entry factor expression upon IFN-γ stimulation and the therapeutic options for treating severe EV-A71–associated complications.

Authors

Man Lung Yeung, Lilong Jia, Cyril C. Y. Yip, Jasper F. W. Chan, Jade L. L. Teng, Kwok-Hung Chan, Jian-Piao Cai, Chaoyu Zhang, Anna J. Zhang, Wan-Man Wong, Kin-Hang Kok, Susanna K. P. Lau, Patrick C. Y. Woo, Janice Y. C. Lo, Dong-Yan Jin, Shin-Ru Shih, Kwok-Yung Yuen

×

Abstract

Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many infectious diseases, yet their dynamics and impact on HIV/SIV infection have not yet been assessed. We hypothesized that SIV infection and the related microbial translocation trigger NET activation and release (NETosis), and we investigated the interactions between NETs and immune cell populations and platelets. We compared and contrasted the levels of NETs between SIV-uninfected, SIV-infected, and SIV-infected antiretroviral-treated nonhuman primates. We also cocultured neutrophils from these animals with either peripheral blood mononuclear cells or platelets. Increased NET production was observed throughout SIV infection. In chronically infected animals, NETs were found in the gut, lung, and liver, and in the blood vessels of kidney and heart. Antiretroviral therapy (ART) decreased NETosis, albeit above preinfection levels. NETs captured CD4+ and CD8+ T cells, B cells, and monocytes, irrespective of their infection status, potentially contributing to the indiscriminate generalized immune cell loss characteristic to HIV/SIV infection, and limiting the CD4+ T cell recovery under ART. By capturing and facilitating aggregation of platelets, and through expression of increased tissue factor levels, NETs may also enhance HIV/SIV-related coagulopathy and promote cardiovascular comorbidities.

Authors

Ranjit Sivanandham, Egidio Brocca-Cofano, Noah Krampe, Elizabeth Falwell, Sindhuja Murali Kilapandal Venkatraman, Ruy M. Ribeiro, Cristian Apetrei, Ivona Pandrea

×

In-Press Preview - More

Abstract

The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (mir-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1dependant as HIF-1-deficiency in cells and kidney proximal tubules attenuated mir-668 expression. We further identified a functional HIF-1 binding site in mir-668 gene promoter. Anti-mir-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas mir-668 mimic was protective. Mechanistically, anti-mir-668 induced mitochondrial fragmentation, whereas mir-668 blocked mitochondrial fragmentation during hypoxia. We analyzed mir-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of mir-668. Among these genes, only Mitochondrial Protein 18 KDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, mir-668 mimic suppressed MTP18, whereas anti-mir-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of mir-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that mir-668 is induced via HIF-1 in ischemic AKI and, upon induction, mir-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.

Authors

Qingqing Wei, Haipeng Sun, Shuwei Song, Yong Liu, Pengyuan Liu, Man J. Livingston, Jianwen Wang, Mingyu Liang, Qing-Sheng Mi, Yuqing Huo, N. Stanley Nahman, Changlin Mei, Zheng Dong

×

Abstract

Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and a SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome type 3 and 4, respectively. Here, we demonstrate that classical non-homologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7 and HELLS deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells mutated for the other ICF genes DNMT3B and ZBTB24 (responsible for ICF type 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.

Authors

Motoko Unoki, Hironori Funabiki, Guillaume Velasco, Claire Francastel, Hiroyuki Sasaki

×

Abstract

Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration, thus we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immune blotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA and CRISPR/CAS9 techniques followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal GBM show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αVβ5 (ITGαVβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived OPN and host-derived OPN was critical for glioma development. OPN deficiency in either the innate immune or glioma cells demonstrated a marked reduction of M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. OPN can be exploited as an immune modulatory target, with efficacious therapeutic results using systemically administered OPN-4-1BB bispecific aptamers, increasing median survival time by 68% (P < 0.05). OPN is an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and can be exploited as a therapeutic target.

Authors

Jun Wei, Anantha Marisetty, Brett Schrand, Konrad Gabrusiewicz, Yuuri Hashimoto, Martina Ott, Zacharia Grami, Ling-Yuan Kong, Xiaoyang Ling, Hillary G. Caruso, Shouhao Zhou, Y. Alan Wang, Gregory N. Fuller, Jason T. Huse, Eli Gilboa, Nannan Kang, Xingxu Huang, Roel Verhaak, Shulin Li, Amy B. Heimberger

×

Abstract

Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for multiple myeloma (MM) patients and is thought to prolong disease plateau-phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipients and donors that were myeloma-naïve or were myeloma-experienced to simulate autologous transplantation. Surprisingly, we demonstrate broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naïve T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct TCR repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients, and was myeloma clone-specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17-receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFNγ secretion and signaling was critical to protective immunity, and was profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and suggests rational approaches to improving clinical outcome.

Authors

Slavica Vuckovic, Simone A. Minnie, David Smith, Kate H. Gartlan, Thomas S. Watkins, Kate A. Markey, Pamela Mukhopadhyay, Camille Guillerey, Rachel D. Kuns, Kelly R. Locke, Antonia L. Pritchard, Peter A. Johansson, Antiopi Varelias, Ping Zhang, Nicholas D. Huntington, Nicola Waddell, Marta Chesi, John J. Miles, Mark J. Smyth, Geoffrey R. Hill

×

Abstract

Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a PORCN inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of greater than 3,500 Wnt activated genes (23% of the transcriptome). Regulation was both via Wnt/β-catenin, and through the modulation of protein abundance of important transcription factors including MYC via Wnt/STOP. Our study identifies a central role of Wnt /β-catenin and Wnt/STOP signaling in controlling ribosomal biogenesis, a key driver of cancer proliferation.

Authors

Babita Madan, Nathan Harmston, Gahyathiri Nallan, Alex Montoya, Peter Faull, Enrico Petretto, David M. Virshup

×

Advertisement

October 2018

128 10 cover

October 2018 Issue

On the cover:
Enhanced β integrin adhesion underlies thrombosis risk in JAK2-V617F–driven neoplasms

In this issue of the JCI, Edelmann et al. reveal that a JAK2-V617F mutation that is common in patients with polycythemia vera and essential thrombocytosis enhances risk of developing life-threatening thromboses by increasing β1 and β2 integrin affinity for the endothelial adhesion molecules VCAM1 and ICAM2. This aberrant interaction underlies also altered myeloid trafficking to the spleen. The cover image shows the expression of endothelial VCAM1 (white) and ICAM1 (purple) together with myeloid-derived cells (yellow) and other immune cell populations in a mouse spleen. Image credit: Lars Philipsen.

×
Jci tm 2018 10

October 2018 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mitochondrial dysfunction in disease

Series edited by Michael Sack

Mitochondria transform nutrients and oxygen into chemical energy that powers a multitude of cellular functions. While mitochondrial aerobic glycolysis generates the majority of a cell’s ATP, its byproducts also have wide-ranging influences on cellular health and longevity. This review series, edited by Dr. Michael Sack, focuses on the many contributions of mitochondria to disease and aging. The reviews highlight evidence linking altered mitochondrial metabolism and oxidative stress to a range of pathophysiological phenomena: inflammation and immune dysfunction, heart failure, cancer development, metabolic disease, and more. In many diseases and conditions, mitochondrial dysfunction is considered the tipping point toward pathological progression. However, as these reviews discuss, therapeutic targeting of mitochondria may be a powerful strategy to subvert disease and aging processes.

×