Recently published - More

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid–, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.

Authors

Bin Gu, Kelly E. Carstens, Matthew C. Judson, Katherine A. Dalton, Marie Rougié, Ellen P. Clark, Serena M. Dudek, Benjamin D. Philpot

×

Abstract

Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene–deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB–OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.

Authors

Jun Wei, Anantha Marisetty, Brett Schrand, Konrad Gabrusiewicz, Yuuri Hashimoto, Martina Ott, Zacharia Grami, Ling-Yuan Kong, Xiaoyang Ling, Hillary Caruso, Shouhao Zhou, Y. Alan Wang, Gregory N. Fuller, Jason Huse, Eli Gilboa, Nannan Kang, Xingxu Huang, Roel Verhaak, Shulin Li, Amy B. Heimberger

×

Abstract

Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine–positive plasmablasts are largely similar, whereas IgA vaccine–negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.

Authors

Karlynn E. Neu, Jenna J. Guthmiller, Min Huang, Jennifer La, Marcos C. Vieira, Kangchon Kim, Nai-Ying Zheng, Mario Cortese, Micah E. Tepora, Natalie J. Hamel, Karla Thatcher Rojas, Carole Henry, Dustin Shaw, Charles L. Dulberger, Bali Pulendran, Sarah Cobey, Aly A. Khan, Patrick C. Wilson

×

Abstract

Pyrin is an inflammasome sensor that promotes caspase-1–mediated pyroptotic cell death and maturation of proinflammatory cytokines IL-1β and IL-18. Familial Mediterranean fever (FMF), an autoinflammatory disorder, is associated with mutations in the gene encoding pyrin (MEFV). FMF-knockin (FMF-KI) mice that express chimeric pyrin protein with FMF mutation (MefvV726A/V726A) exhibit an autoinflammatory disorder mediated by autoactivation of the pyrin inflammasome. Increase in the levels of TNF are observed in FMF-KI mice, and many features of FMF overlap with the autoinflammatory disorder associated with TNF receptor signaling. In this study, we assessed the contribution of TNF signaling to pyrin inflammasome activation and its consequent role in distinct FMF pathologies. TNF signaling promoted the expression of pyrin in response to multiple stimuli and was required for inflammasome activation in response to canonical pyrin stimuli and in myeloid cells from FMF-KI mice. TNF signaling promoted systemic wasting, anemia, and neutrophilia in the FMF-KI mice. Further, TNF-induced pathology was induced specifically through the TNFR1 receptor, while TNFR2-mediated signaling was distinctly protective in colitis and ankle joint inflammation. Overall, our data show that TNF is a critical modulator of pyrin expression, inflammasome activation, and pyrin-inflammasomopathy. Further, specific blockade of TNFR1 or activation of TNFR2 could provide substantial protection against FMF pathologies.

Authors

Deepika Sharma, Ankit Malik, Clifford Guy, Peter Vogel, Thirumala-Devi Kanneganti

×

Abstract

Graft-versus-tumor (GVT) effects have been thought to mostly result from allogeneic transplants; however, there is a growing body of research that supports a possible autologous GVT effect. In early clinical studies, a positive correlation between lymphocyte count recovery after autologous transplantation and overall survival has been observed. However, mechanistic studies to identify the mediators of autologous GVT responses have been lacking. In this issue of the JCI, Vuckovic et al. observed a T cell–dependent autologous GVT effect in the Vk*MYC myeloma model. Moreover, the authors showed that CD8+ T cells mediate myeloma control through IFN-γ secretion, which could be further augmented with a CD137 agonist, suggesting a therapeutic approach for enhancing autologous GVT.

Authors

Shuai Dong, Irene M. Ghobrial

×

Abstract

Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma–bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell–dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell–dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.

Authors

Slavica Vuckovic, Simone A. Minnie, David Smith, Kate H. Gartlan, Thomas S. Watkins, Kate A. Markey, Pamela Mukhopadhyay, Camille Guillerey, Rachel D. Kuns, Kelly R. Locke, Antonia L. Pritchard, Peter A. Johansson, Antiopi Varelias, Ping Zhang, Nicholas D. Huntington, Nicola Waddell, Marta Chesi, John J. Miles, Mark J. Smyth, Geoffrey R. Hill

×

Abstract

Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3′-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.

Authors

Shuai Dong, Bonnie K. Harrington, Eileen Y. Hu, Joseph T. Greene, Amy M. Lehman, Minh Tran, Ronni L. Wasmuth, Meixiao Long, Natarajan Muthusamy, Jennifer R. Brown, Amy J. Johnson, John C. Byrd

×

Abstract

Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.

Authors

Motoko Unoki, Hironori Funabiki, Guillaume Velasco, Claire Francastel, Hiroyuki Sasaki

×

In-Press Preview - More

Abstract

Immune checkpoint therapies have shown tremendous promise in cancer therapy. However, tools to assess their target engagement, and hence ability to predict their efficacy, have been lacking. Here, we show that target engagement and tumor residence kinetics of antibody therapeutics targeting the programmed death ligand-1 (PD-L1) can be quantified non-invasively. In computational docking studies, we observed that PD-L1-targeted antibodies (atezolizumab, avelumab, durvalumab) and a high affinity PD-L1 binding peptide, WL12, have common interaction sites on PD-L1. Using the peptide radiotracer [64Cu]WL12 in vivo, we employed positron emission tomography (PET) imaging and biodistribution studies, in multiple xenograft models and demonstrated that variable PD-L1 expression and its saturation by atezolizumab, avelumab, and durvalumab can be quantified independent of biophysical properties and pharmacokinetics of antibodies. Next, we used [64Cu]WL12 to evaluate the impact of time and dose on free fraction of tumor PD-L1 levels during treatment. These quantitative measures enabled, by mathematical modeling, prediction of antibody doses needed to achieve therapeutically effective occupancy (defined as >90%). Thus, we show that peptide-based PET is a promising tool for optimizing dose and therapeutic regimens employing PD-L1 checkpoint antibodies, and can be used for improving therapeutic efficacy.

Authors

Dhiraj Kumar, Ala Lisok, Elyes Dahmane, Matthew D. McCoy, Sagar Shelake, Samit Chatterjee, Viola Allaj, Polina Sysa-Shah, Bryan Wharram, Wojciech G. Lesniak, Ellen Tully, Edward Gabrielson, Elizabeth M. Jaffee, John T. Poirier, Charles M. Rudin, Jogarao V.S. Gobburu, Martin G. Pomper, Sridhar Nimmagadda

×

Abstract

Macrophages perform key functions in tissue homeostasis that are influenced by the local tissue environment. Within the tumor microenvironment tumor associated macrophages can be altered to acquire properties that enhance tumor growth. Here, we found lactate, a metabolite found in high concentration within the anaerobic tumor environment, activated mTORC1 that subsequently suppressed TFEB-mediated expression of a macrophage-specific vacuolar ATPase subunit ATP6V0d2. Atp6v0d2-/- mice were more susceptible to tumor growth with enhanced HIF-2α-mediated VEGF production in macrophages that display a more protumoral phenotype. We found that ATP6V0d2 targeted HIF-2α but not HIF-1α for lysosome-mediated degradation. Blockade of HIF-2α transcriptional activity reversed the susceptibility of Atp6v0d2-/- mice to tumor development. Furthermore, in a cohort of patients with lung adenocarcinoma, expression of ATP6V0d2 and HIF-2α was positively and negatively correlated with survival respectively, suggesting a critical role of the macrophage lactate-ATP6V0d2-HIF-2α axis in maintaining tumor growth in human patients. Together, our results highlight the ability of tumor cells to modify the function of tumor-infiltrating macrophages to optimize the microenvironment for tumor growth.

Authors

Na Liu, Jing Luo, Dong Kuang, Sanpeng Xu, Yaqi Duan, Yu Xia, Zhengping Wei, Xiuxiu Xie, Bingjiao Yin, Fang Chen, Shunqun Luo, Huicheng Liu, Jing Wang, Kan Jiang, Feili Gong, Zhao-hui Tang, Xiang Cheng, Huabin Li, Zhuoya Li, Arian Laurence, Guoping Wang, Xiang-Ping Yang

×

Abstract

Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant cardiac α1C subunits lacking capacity to bind CaVβ because of alanine-substitutions of three conserved residues — Y467, W470, and I471 in the α-interaction domain of rabbit α1C — can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic-augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit-sequestering-peptide sharply curtailed β-adrenergic stimulation of wild-type Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.

Authors

Lin Yang, Alexander Katchman, Jared S. Kushner, Alexander Kushnir, Sergey I. Zakharov, Bi-xing Chen, Zunaira Shuja, Prakash Subramanyam, Guoxia Liu, Arianne Papa, Daniel D. Roybal, Geoffrey S. Pitt, Henry M. Colecraft, Steven O. Marx

×

Abstract

Current thalassemia gene therapy protocols require the collection of hematopoietic stem/progenitor cells (HSPCs), in vitro culture, lentivirus vector transduction, and retransplantation into myelo-ablated patients. Because of cost and technical complexity, it is unlikely that such protocols will be applicable in developing countries where the greatest demand for a beta-thalassemia therapy lies. We have developed a simple in vivo HSPC gene therapy approach that involved HSPC mobilization and an intravenous injection of integrating HDAd5/35++ vectors. Transduced HSPCs homed back to the bone marrow where they persisted long-term. HDAd5/35++ vectors for in vivo gene therapy of thalassemia had a unique capsid that targeted primitive HSPCs through human CD46, a relatively safe SB100X transposase-based integration machinery, a micro-LCR driven gamma-globin gene and, a MGMT(P140K) system that allowed for increasing the therapeutic effect by short-term treatment with low-dose O6BG/BCNU. We showed in “healthy” human CD46 transgenic mice and in a mouse model of thalassemia intermedia that our in vivo approach resulted in stable gamma-globin expression in the majority of circulating red blood cells. The high marking frequency was maintained in secondary recipients. In the thalassemia model, a near complete phenotypic correction was achieved. The treatment was well tolerated. This cost-efficient and “portable” approach could permit a broader clinical application of thalassemia gene therapy.

Authors

Hongjie Wang, Aphrodite Georgakopoulou, Nikoletta Psatha, Chang Li, Chrysi Capsali, Himanshu Bhusan Samal, Achilles Anagnostopoulos, Anja Ehrhardt, Zsuzsanna Izsvák, Thalia Papayannopoulou, Evangelia Yannaki, André Lieber

×

Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-/G-actin ratios and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter reducing eNOS expression, thereby mediating a pro-fibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the pro-fibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.

Authors

Selma Osmanagic-Myers, Attila Kiss, Christina Manakanatas, Ouafa Hamza, Franziska Sedlmayer, Petra L. Szabo, Irmgard Fischer, Petra Fichtinger, Bruno K. Podesser, Maria Eriksson, Roland Foisner

×

Advertisement

November 2018

128 11 cover

November 2018 Issue

On the cover:
Blocking angiopoietin-2 mitigates pathological heart repair

In this issue of the JCI, Lee et al. expose the antagonistic role of the vascular growth factor angiopoietin-2 in heart repair. Elevated expression of angiopoetin-2 in the infarct border zone exacerbated vascular leakage, hypoxia, and fibrosis by interfering in endothelium-stabilizing angiopoetin-1/Tie2 signaling. Angiopoietin-2 blockade mitigated pathological cardiac remodeling, supporting its potential as a therapeutic target in heart failure. This issue’s cover illustrates the low level of cardiac fibrosis (green) observed in the infarcted murine heart in the absence of angiopoietin-2 expression. Image credit: Seung-Jun Lee.

×
Jci tm 2018 11

November 2018 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mitochondrial dysfunction in disease

Series edited by Michael Sack

Mitochondria transform nutrients and oxygen into chemical energy that powers a multitude of cellular functions. While mitochondrial aerobic glycolysis generates the majority of a cell’s ATP, its byproducts also have wide-ranging influences on cellular health and longevity. This review series, edited by Dr. Michael Sack, focuses on the many contributions of mitochondria to disease and aging. The reviews highlight evidence linking altered mitochondrial metabolism and oxidative stress to a range of pathophysiological phenomena: inflammation and immune dysfunction, heart failure, cancer development, metabolic disease, and more. In many diseases and conditions, mitochondrial dysfunction is considered the tipping point toward pathological progression. However, as these reviews discuss, therapeutic targeting of mitochondria may be a powerful strategy to subvert disease and aging processes.

×